★发光:吸收能量后光子的发射(可见光,UV,X射线)。Energy deposition in the material by ★ Light ➔ Photoluminescence ★ Heat ➔ Thermoluminescence ★ Sound ➔ Sonoluminescence ★ Electric energy ➔ Electrolumineszence ★ Mechanical deformation ➔ Triboluminescence ★ Chemical reactions ➔ Chemoluminescence ★ Living organism ➔ Bioluminescence ★ Scintillation: Emission of photons following the excitation of atoms and molecules by radiation ( γ或粒子辐射)。★荧光:通过吸收光或其他电磁辐射的物质发射光的物质。在大多数情况下,发射光的波长更长。排放之后不久(Ass.10 ns)。★磷光:与荧光相似,但是重新排放不是立即的。能量水平和光子发射之间的过渡延迟(MS最多小时)。
但是,这已经发生了数十年,如果他们没有使灯光变暗,或者他们使用了更传统的光源,例如钨和卤素球/灯泡/灯。这是因为这些旧的光源本质上使用热金属丝来创造光,当注入音调时,在细丝中注入了足够的“热惯性”以保持其输出(至少对人眼)。
伽玛射线对象:了解伽玛射线与物质的各种相互作用。使用已知能量的伽马射线校准伽马射线闪烁光谱仪,并使用它来测量“未知”伽马射线的能量。使用正电子歼灭辐射来确定电子的质量并观察相关的伽马射线。读数:实验室手册(请参阅补充阅读)“核科学实验” AN34,EG&G ORTEC提供了有关许多本科核试验的背景和技术的精彩动手讨论。所描述的设备类似于实验室中可用的设备。在本文末尾给出了其他读数。设备:NAI:具有集成前置放大器(2),高压电源,堪培拉型号2000电源的TL闪烁体和光电倍增管检测器,NIM BIN,NIM BIN,NIM BIN,CANBERRA 2015A放大器/单通道分析仪模块(2) (PCA-II)CompuAdd 286个人计算机,Analyzer软件,监视器的董事会。背景:在本实验中,您将通过检测腐烂产生的伽马射线来研究核的放射性衰变。γ射线检测是一个多步骤过程:伽马射线进入NAI:TL闪烁体晶体,在其中产生了快速移动的自由电子,进而通过在晶体中行驶时在路径中激发离子而失去能量。这种激发能以各种方式释放出来,其中一种是可见光的发射(荧光)。因此,进入闪烁体的单个高能伽马射线会产生低能光子的闪光。这些光子针对光电倍增管的光敏表面,它们通过光电效应弹出电子。电子被收集在光电培养基中并放大以产生电流脉冲,该脉冲转换为电压脉冲,其高度与光电子的数量成正比,因此与到达管的光子数量成正比,这又与快速电子的初始能量成正比。当放射性源位于闪烁体附近时,光电层流会产生一系列脉冲,每个脉冲对应于单个核的衰变。每个脉冲的幅度与伽马射线释放的电子能量有关。使用单通道分析仪研究这些脉冲。单个通道分析仪(SCA)计数电压脉冲的数量
塑料闪烁体 ...................................................................................................................................................................................... p. 6 大体积塑料闪烁体和组件 ...................................................................................................................... p. 7 BETA 闪烁体 ...................................................................................................................................................................................... p. 8 用于粒子和高能物理的闪烁体 ...................................................................................................... p. 9
无机闪烁体可以用高能量吸收电离辐射,以瞬时将其转换为低能的光子。(1-3)利用此功能,通过将光电遗传学与可以将光子转换为电信号转换为电信号的光探测器将闪烁体应用于辐射探测器。(4,5)闪烁检测器根据其应用而分为电流和光子计数模式测量值。(6,7),尤其是当前模式类型的检测器集成了一毫秒的信号,并已用于X射线计算机断层扫描(CT)和X射线射线照相的应用中。(8)当前模式类型的闪烁体需要高发射强度,大的有效原子数(z eff),高密度(ρ)和低余辉水平(AL)。但是,由于没有闪烁器满足所有必需的属性,因此已经开发出新的闪烁体。(9-14)基于HFO 2的化合物,例如RE 2 HF 2 O 7(RE = LA,GD,LU)和AE HFO 3(AE = CA,SR,BA)引起了人们的注意,因为它们的大Z eff和Highρ。在先前关于基于HFO 2的闪烁体的报告中,只有Z EFF(65.2)和ρ(6.95 g/cm 3)的Cahfo 3显示出闪烁的光屈服于10,000光子/MEV。(15–21)此外,我们的研究小组研究了用Ti,CE,PR,TB和TM掺杂的Cahfo 3的闪烁特性,(18,21-26)
摘要。背景:本研究重点是开发上肢康复计划。为此,设计了一个基于稳态视觉诱发电位 (SSVEP) 触发的脑机接口 (BCI)-功能性电刺激 (FES) 的动作观察游戏,该游戏以闪烁的动作视频为特色。目的:特别是,通过将动作观察范式与基于 BCI 的 FES 相结合来研究游戏的协同效应。方法:在两种条件下对比 BCI-FES 系统:闪烁的动作视频和闪烁的噪声视频。为此,招募了 11 名年龄在 22-27 岁之间的右利手受试者。检查了对这两种情况的大脑激活差异。结果:结果表明,T3 和 P3 通道在动作视频中表现出 8-13 Hz 的 Mu 抑制比噪声视频更大。此外,与噪声视频相比,T4、C4 和 P4 通道对动作的增强高 beta(21-30 Hz)。最后,T4 表明与噪声视频相比,动作视频的低 beta(14-20 Hz)受到抑制。结论:基于闪烁动作视频的 BCI-FES 系统比基于闪烁噪声的系统对皮质激活产生了更大的协同效应。