恒定面积抛物面天线和反射镜的远场角波束宽度与发射信号的波长成正比。因此,天线或透镜的发射信号功率分布在与波长平方成正比的立体角上,即到达接收器的信号功率与频率平方成正比。对于给定的发射孔径尺寸,频率越高,到达接收器的信号功率越大。接收器噪声也会随着频率的增加而增加。在光频率下,与频率成正比的量子噪声占主导地位。在射频下,量子噪声微不足道:其他不随频率强烈变化的噪声源占主导地位。因此,首先,接收器噪声与频率成正比。由于接收信号功率与频率平方成正比,接收器信噪比 (SNR) 与频率成正比。无差错通信的最大可能速率会随着接收的 SNR 而增加。这是光通信的主要优势。迄今为止,NASA 使用的最高下行射频通信频率是深空 Ka 波段下行频率 32 千兆赫 (GHz)。典型的下行光波长为 1550 纳米 (nm),相当于 193.5 太赫兹 (THz) 的频率。因此,光与射频频率之比为 193.5 THz/32 GHz,约为 6000。在其他所有条件相同的情况下,1550 nm 光通信系统的接收器 SNR 有可能比 Ka 波段系统高 6000 倍。
微波管中继器、高频(HF)无线电(大约 3 到 30 MHz)以及通过飞机或轮船进行信息物理传输。世界其他地方甚至没有那么好的装备。HF 介质一直对通信工程师构成挑战。在有利条件下,它通过使用相对较小的低功率发射和接收终端设备提供全球通信(即在特定时间从特定点到另一个特定点)。然而,自然现象经常干扰 HF 链路。在战争时期(冷战或热战),它们成为干扰的目标。尽管如此,HF 还是 20 世纪 50 年代唯一的游戏。因此,美国全球战略部队的指挥和控制通信有很多不足之处。林肯实验室的空间通信研究和开发计划在其 3D 年的历史中取得了很大成就。该计划的最初目标只是使远程军事通信路线成为可能。
摘要:CDL(通用数据链)是美国军方在机载平台上进行情报监视与侦察 (ISR) 的标准通信波形。为支持这一标准,军方拥有众多空中、海上和地面 CDL 系统用于战区连接。当前 CONOPS 缺少的是可以将其战术 ISR 数据直接带入战区的太空资产,以便进行响应式任务分配和收集。随着太空 CDL 设计的出现,我们可以将实时战术数据带入现有的战区地面站。将太空图像从直接任务中带入战区是一项壮举,即使是大型卫星也从未做到过。战区内卫星图像概念将在 2005 年底使用经过修改的机载合格 CDL 通信系统,通过小型卫星演示进行测试,实现 CDL 波形。太空合格 CDL 设计最大程度地利用了 L-3 机载设计,但 L-3 设计的几个方面必须针对太空应用和操作进行更改。零件选择本身就是我们设计方法的重要驱动因素。将最先进的高数据速率通信机载设计迁移到太空并非易事,因为批准的零件清单非常有限。L-3 还利用 CTX-886 空间发射器进行所有非基带设计部分。L-3 设计的成功与我们现有的机载设计相比,大大节省了功耗、重量和体积;功耗降低 58%,重量减少 45%,体积减少 73%。硬件的其他设计增强功能包括: • 无需软件控制即可运行 • 上行链路和下行链路的独立电源 • 由机载处理器或地面站控制 • 耐辐射组件 本文还将讨论性能、硬件和特性。