预防故障的材料选择。。。。。。。。。。。。。。。。。。。3 Brett A. Miller,IMR测试实验室设计和预防故障。。。。。。。。。。。。。。。。。。。。。。。设计中的4种材料选择。。。。。。。。。。。。。。。。。。。。。。。。8用于预防故障的材料选择。。。。。。。。。。。。。。14材料选择和故障分析。。。。。。。。。。。。。。。15在失败分析中的工程设计过程调查。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20史蒂文·库什尼克(Steven Kushnick),史蒂文·B·库什尼克(Steven B. Kushnick)失败方式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20根的物理原因失败。。。。。。。。。。。。。。。。。。20失败的根本原因。。。。。。。。。。。。。。。。。。。。。。。。。20工程设计过程。。。。。。。。。。。。。。。。。。。。21失败模式和效果分析。。。。。。。。。。。。。。。。。。21考虑工程设计过程的重要性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21管理影响。。。。。。。。。。。。。。。。。。。。。。。。。。。26工程专家在产品责任诉讼中的作用。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 Farheen S. Khan,Rimkus Consulting Group Inc.产品责任诉讼和专家证人。。。。。。。30专家意见的可采性。。。。。。。。。。。。。。。。。。。。30考虑如何评估数据的考虑。。。。。。。。。。。。。。。31个事实证据 - 调查,证人陈述和事故报告。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31强制性和自愿标准。。。。。。。。。。。。。。。。。。31个物理证据 - 产品检查和测试。。。。。。。31病历。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32科学文献。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32评估设计决策。。。。。。。。。。。。。。。。。。。。。。。32该产品的设计是否危险,它是否构成了不合理的伤害风险?。。。。。。。。。。。。。。。。。。。。。32使用环境。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33考虑用户的贡献 - 人类因素。。。。。33个反对专家的报告。。。。。。。。。。。。。。。。。。。。。。。34调查结果报告。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34沉积证词。。。。。。。。。。。。。。。。。。。。。。。。。。。。34审判证词。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34可靠性中心。。。。。。。。。。。。。。。。。。。。。。。。36 Dana Netherton,Athos Corporation以可靠性为中心的历史。。。。。。。。。。。。36以可靠性为中心的维护过程的概述。。38失败模式和效果分析。。。。。。。。。。。。。。。。。。。38失败管理政策和“技术可行性”。。41失败后果和政策值得。。。。。。。。42失败管理政策选择。。。。。。。。。。。。。。。。。44管理和资源以可靠性为中心的维护过程。。。。。。。。。。。。。。。。。。。。。。。。。。。45个结论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46
量子与经典对应物之间的比较是定义量子计算机蓝图的必要步骤。同时也分析了它们的差异,但最大的差异是量子和量子门的错误率,以10-3为单位,而对于CMOS技术,则大约为10-15。物理学家目前正在研究如何规避此问题,但是估计将解决方案至少十年之遥。K. Bertels将我们的当前时期与经典计算机建筑的前横梁时期进行了比较。错误率已经提到的错误率是由于物理Qubits无法长时间保留其状态的原因。这发生在当前目前的每个实验平台。量子门是解决此问题的另一个贡献者,也容易受到错误的介绍。这些因素通过专注于操纵理论完美的量子单元来使我们距离真实量子比特的距离,并隔离了此类问题。也称为完美,因为它们的行为与其无关,并且它们的门操作是防故障的。在这种情况下,本主论文描述了量子数字微观架构的开发,该结构将用作量子组装语言之间的介质-CQASM-和使用C ++进行此类Qubits -Qbeesim-处理的仿真平台。此处描述的量子微观构造是通用的,因为它没有具体溶液为导向的设计,但应用作适应性的结构,需要最小的调整以拟合任何特定的研究领域。使用它,我们估计当前的经典设备在电路模拟方面允许我们使用什么,得出的结论是,对于单个孤立的设备,固定量子应超出我们的限制。这项工作使我们更接近实现完整的全堆栈量子加速器[11],并简化了量子算法开发过程。