Loading...
机构名称:
¥ 11.0

量子与经典对应物之间的比较是定义量子计算机蓝图的必要步骤。同时也分析了它们的差异,但最大的差异是量子和量子门的错误率,以10-3为单位,而对于CMOS技术,则大约为10-15。物理学家目前正在研究如何规避此问题,但是估计将解决方案至少十年之遥。K. Bertels将我们的当前时期与经典计算机建筑的前横梁时期进行了比较。错误率已经提到的错误率是由于物理Qubits无法长时间保留其状态的原因。这发生在当前目前的每个实验平台。量子门是解决此问题的另一个贡献者,也容易受到错误的介绍。这些因素通过专注于操纵理论完美的量子单元来使我们距离真实量子比特的距离,并隔离了此类问题。也称为完美,因为它们的行为与其无关,并且它们的门操作是防故障的。在这种情况下,本主论文描述了量子数字微观架构的开发,该结构将用作量子组装语言之间的介质-CQASM-和使用C ++进行此类Qubits -Qbeesim-处理的仿真平台。此处描述的量子微观构造是通用的,因为它没有具体溶液为导向的设计,但应用作适应性的结构,需要最小的调整以拟合任何特定的研究领域。使用它,我们估计当前的经典设备在电路模拟方面允许我们使用什么,得出的结论是,对于单个孤立的设备,固定量子应超出我们的限制。这项工作使我们更接近实现完整的全堆栈量子加速器[11],并简化了量子算法开发过程。

量子加速器的通用微体系结构

量子加速器的通用微体系结构PDF文件第1页

量子加速器的通用微体系结构PDF文件第2页

量子加速器的通用微体系结构PDF文件第3页

量子加速器的通用微体系结构PDF文件第4页

量子加速器的通用微体系结构PDF文件第5页

相关文件推荐

2022 年
¥2.0
2006 年
¥1.0