Loading...
机构名称:
¥ 1.0

连续变量 (CV) 类型的多模量子光学是许多量子应用的核心,包括量子通信 [1、2]、量子计量 [3] 以及通过团簇态 [5-7] 进行的量子计算 [4]。处理多模光学系统的核心步骤是识别所谓的超模 [8-10]。这些是原始模式的相干叠加,使描述系统动力学的方程对角化,并允许将多模 CV 纠缠态重写为独立压缩态的集合 [11]。超模知识对于优化对状态的非经典信息的检测[8,9,12]、在光频率梳[13-15]或多模空间系统[16]中生成和利用 CV 团簇态以及设计复杂的多模量子态[17,18]都是必需的。在实验中,由于超模在统计上是独立的,因此可以用单个零差探测器测量,从而大大减少实验开销[15]。由于其用途广泛,因此一种允许检索超模的通用策略对于多模量子光学及其应用至关重要。本理论工作的目的是提供这样一种强大而通用的工具。更具体地说,多模光量子态通常是通过二次哈密顿量描述的非线性相互作用产生的[2]。对角化系统方程的变换必须是辛变换,即遵守交换规则。标准的辛对角化方法,如 Block-Messiah 分解 (BMD) [19],适用于单程相互作用 [20-22],但不适用于基于腔的系统,因为在基于腔的系统中使用它们需要对所涉及模式的线性色散和非线性相互作用做出先验假设 [10, 23]。这种限制使传统的辛方法不适用于处理广泛的相关实验情况,包括利用三阶非线性相互作用的共振系统中的多模特征。例如,硅和氮化硅等集成量子光子学的重要平台就是这种情况 [24, 25]。在本文中,我们提供了一种广义策略,它扩展了标准辛方法,并允许在没有任何假设或限制的情况下检索任何二次哈密顿量的超模结构。我们在此考虑一个通用的阈值以下谐振系统,该系统可以呈现线性和非线性色散效应。我们的方法适用于多种场景。这些包括低维系统,例如失谐设备中的单模或双模压缩[ 26 , 27 ]或光机械腔中的单模或双模压缩[ 28 ],以及高度多模状态,例如通过硅光子学集成系统中的四波混频产生的状态[ 24 ]。最终,我们注意到,这里为共振系统开发的工具同样可以用于单程配置中的空间传播分析[16, 22]。

实现多模量子光学的通用方法

实现多模量子光学的通用方法PDF文件第1页

实现多模量子光学的通用方法PDF文件第2页

实现多模量子光学的通用方法PDF文件第3页

实现多模量子光学的通用方法PDF文件第4页

实现多模量子光学的通用方法PDF文件第5页

相关文件推荐