与薄膜电池不同,6限制为6 cm 2的6个限制,大量LLZO可以实现高功率和能量应用。然而,最近在SE/ CC报告中调查了LI成核行为的最新研究表明,LI镀以不均匀的形态,导致高度异质的界面。8,9这将抑制锂作为膜状阳极的生长,从而导致出乎意料的过早短路。8–10有趣的是,当SE表面通过人工互层(例如AGC,11 AG,12-14或AU)修饰时,锂生长特性可以显着改善。15–17这些材料与锂的合金合金非常接近Li/Li +氧化还原反应,从而抑制了成核屏障。15,18这与Si或SN的情况相反,19,20,在与锂合金合金的同时发生了重大的结构变化。因此,在电池运行过程中,Ag或Au Interlayer的作用可能会有效地调节CC处的锂沉积,作为用于同质锂再分配的一种动态缓冲层。15,18
最近,铅卤化物钙钛矿吸引了显着的注意力,作为光电化学(PEC)太阳能分裂的有前途的吸收材料。然而,界面处的电荷积累诱导的离子迁移导致钙钛矿降解和效率损失。为了抑制电荷积累并改善了钙钛矿光阳极的PEC性能,提出了一种简单的界面工程,通过用聚乙基乙酰基(PEIE)(PEIE)和氯贝苯甲酸(CBSA)的混合物来装饰SNO 2 /Perovskite界面。混合的CBSA + PEIE处理有效地钝化了SNO 2中的氧空位,并调整了SNO 2和钙钛矿之间的带对齐。混合物处理的协同作用促进了在SNO 2 /Perovskite界面上有效的载体提取,增强了PEC性能并提高设备的稳定性。Perovskite Photoanode表现出令人印象深刻的偏置光子至电流效率为12.9%,出色的耐用性为225 h。此外,使用所有Perovskite光电子界实现了公正的太阳能分裂,从而导致显着的无辅助太阳能到氢气的效率为10.9%,并且连续22 h稳定的操作。
抽象的Li-Air电池是最重要的下一代电池之一。2D分层材料的开发丰富了液压电池的材料。在这项工作中,提出了对2d Mosi 2 N 4上Li原子的形象和能量的DFT研究。我们提出2D MOSI 2 N 4作为Li-Air电池的阳极和阴极材料的合适材料。2D MOSI 2 N 4的高元素电导率使它成为阳极的优势,而在2d Mosi 2 N 4上,Li 2 O 2生长的低屏障为其作为阴极材料带来了优势。LI负载的MOSI 2 N 4的最大容量预计为129 mAh/g。对于Li负载的MOSI 2 N 4,阳极电势在较大的LI载荷中稳定(相对于Li Bund)稳定(〜 -0.2 V)(Li%= 12〜75%)。作为阴极,在Li 2 O 2平板的生长过程中,开路阴极电势稳定(相对于Li Bulb的2.8 V)。我们的工作揭示了2D最大相的可能性(M是过渡金属,A是Al或Si,而X是C,N或两者兼而有权)作为金属空气电池材料。
使用推进剂分布,阳极,阴极,两个磁极以及所得的离子流动方向[2]上述示意图说明了基本霍尔效应推进器操作的功能,其推进剂分布,阳极,阴极,两个磁极,两个磁极和产生的离子流动方向显示。Hall推进器通过使用垂直电和磁场的功能。推进剂的中性原子从储罐(未显示)移动到同轴加速通道。同时,径向磁场作用会阻碍电子流从阴极到阳极的流。电子被困在同轴加速通道的出口附近。交叉场在ɵ方向上产生净霍尔电子电流。被困的电子充当储罐中性推进剂原子电离的体积区域(未显示)。电子与缓慢移动的中性群碰撞,产生离子和更多的电子,以支撑排放量和电离额外的中性性。由于其较大的Larmor Radii,其正离子没有受到磁场的较大仪表的影响。离子通过在等离子体上的磁场阻抗产生的电场加速。随后,所得的高速离子束被外部电子源中和。
摘要:由于低成本,高能量密度和环境友好的优势,锌离子电池(ZIB)被认为是势存储设备。然而,锌阳极受到不可避免的锌树突,钝化,腐蚀和电池充电和放电期间的进化反应,成为Zibs实际应用的障碍。与金属锌阳极相比,无锌金属阳极提供更高的工作电位,可有效地解决金属锌阳极阳极运行期间锌树突,氢进化和侧反应的问题。电池安全性和周期寿命的改善创造了进一步商业化ZIB的条件。因此,这项工作系统地介绍了“摇椅” Zibs中无锌金属阳极的研究。无锌金属阳极主要分为四类:过渡金属氧化物,过渡金属硫化物,mxene(二维过渡金属碳化物)复合材料和有机化合物,并讨论其性质和锌存储机制。最后,提出了无锌金属阳极发展的前景。本文提出了参考,以进一步促进商业可充电ZIB。
随着电动汽车和大规模储能系统的开发,现有的商业锂离子电池(LIB)越来越无法满足市场需求。出于这个原因,研究人员探索了各种新型材料系统,以增加电池的能量密度,例如基于合金的阳极,1,2 Li金属阳极,3,4 sul sul sul de-de-de-de-de-de-de de de基基阳极,5 - 7和基于Li-rich的锰的阴极。8,9在其中,硅(SI)被认为是商业石墨阳极的最佳替代品之一,因为它具有高理论能力(4200 mAh g -1)和适当的工作电压(〜0.4 V,vs.li/li/li +)。10然而,静电后,硅的体积膨胀高达300%,而Li +的反复插入和提取诱导了表面上的机械应力和变形,从而导致颗粒的粉碎。11,体积变形会破坏相邻硅颗粒之间或颗粒与当前收集器之间的电气接触,而活性材料可能完全从收集器脱离。10,12此外,硅表面上的固体电解质相(SEI)反复破裂并因硅的体积变形而导致,消耗了大量的电解质和活性锂。13随着时间的流逝,
使用可充电锂金属阳极的电化学电池对工作温度和电堆压力很敏感。目前的理解通常假设温度驱动锂金属表面化学的变化,而电堆压力影响阳极形态。在本研究中,我们为这些假设提供了量化证据,并提出了指导理解温度和压力对锂金属电池动力学影响的机制。除了压力与力学、温度与动力学的直接耦合之外,我们还探讨了温度对电池力学和电堆压力对电池化学的可能影响。我们使用一系列原位和非原位技术研究了基于 LiDFOB 盐的电解质成分。温度和压力依赖性电池行为的机理映射将有助于开发改进的锂金属电池。© 2022 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可证(CC BY,http://creativecommons.org/licenses/by/4.0/)的条款发布,允许在任何媒体中不受限制地重复使用作品,只要对原始作品进行适当的引用。[DOI:10.1149/1945-7111/ac91a9]
可充电镁电池有望提供高能量密度,材料可持续性和安全功能,从而吸引了lith岩后电池的研究兴趣。随着MG电解质的进行性开发,具有增强的(电 - )化学稳定性,大量效果已致力于探索高能阴极材料。在这篇综述中,总结了与MG阴极化学相关的最新发现,重点是针对其与阴极宿主的相互作用来促进Mg 2 + di usion的策略。详细阐述了阴极 - 电解质界面的关键作用,在MG系统中仍未探索。强调了对Mg 2 + di usion的动力学局限性优化的方法,从而强调了阴极的快速电化学过程。此外,讨论了绕过大量Mg 2 + di usion的代表性转换化学和协调化学,特别注意其关键挑战和前景。最后,重新审视了单价阴道化学和高容量MG阳极的快速动力学的混合系统,呼吁对这种有希望的策略进行进一步的实际评估。总的来说,目的是提供对阴极化学的基本见解,该见解促进了实用的高性能MG电池的材料开发和界面法规。
Li-S 电池与锂离子电池相比具有显著优势,但由于多硫化物穿梭导致循环寿命较短,因此受到阻碍。先进材料公司 Lyten 开发了新型 3D Graphene™ 材料,该材料具有机械柔性和导电框架以及分层多孔结构,旨在潜在地限制硫和多硫化物并减轻多硫化物穿梭。Lyten 3D Graphene™ 材料在 Li-S 电池中表现出比商用纳米碳更高的硫利用率,并且与 Lyten 新的受保护锂阳极、先进电解质和多功能隔膜相结合,使 Li-S 电池的比能与当前的锂离子电池相当(~250 -275 Wh/kg)。然而,循环寿命相对较短,纽扣电池在 100% DOD、C/3 下循环 300 次,多层软包电池和 18650 圆柱形电池在 100% DOD 下循环 150 次,在 50% DOD 下循环超过一千次。通过进一步调整 3D 石墨烯和其他材料的进步,这两个类别都实现了稳步增长。对早期原型电池进行的初步安全测试对于含有锂金属阳极的 Li-S 电池产生了令人惊讶的良好结果。
电解质负责在正电极和负电极之间进行载体离子,同时将正极电极绝缘以防止短路。固体电解质比常规液体中使用的有机溶剂电解质更阻燃,因此所有固定状态电池有望非常安全。此外,可以通过制造堆叠的细胞来实现高能密度。在常规液体的情况下,将几个小电池串联连接以实现高压,而在全稳态电池中,可以通过堆叠阴极,电解质,阳极和电流收集器来轻松实现高电压。另外,由于固体电解质不是液体,因此可以用作单个单元格不同组件的材料,即对于正电极,负电极和分离器,可提供高度的电池设计自由度。也有可能使用高容量电极活性材料,例如金属锂和硫,5-8在常规液体中很难使用,并且对于实现下一代电池的实现而言,人们的期望很高。全稳态电池有两种主要类型:薄膜和散装。薄膜全稳态电池是通过使用蒸气相的底物上的阴极,电解质和阳极的生长晶体制成的。这种薄膜电池的优点是,在电极和电解质之间实现了良好的界面接触。9,10