摘要 —本文介绍了一种由工作在亚阈值区域的串联 PMOS 器件组成的新策略和电路配置,用于实现极低频有源 RC 滤波器和生物放大器所需的超高值电阻器。根据应用不同,例如生物放大器中的信号带宽可能从几 mHz 到最高 10 kHz 不等。提出了三种不同的电阻结构来实现超高阻值。虽然提出的超高阻值伪电阻器的阻值在几 T Ω 的数量级,但它们占用的片上硅片面积很小,这是超低功耗可植入生物医学微系统中模拟前端电路设计的主要问题之一。此外,这些超高阻值电阻器导致使用小电容来产生非常小的截止频率。因此,实现电容所需的大面积也大大减少。所提出的电阻结构在宽输入电压范围(-0.5 V~+0.5 V)内变化很小,约为7%和12%,从而显著改善了生物放大器的总谐波失真和系统的模拟前端。在180nm CMOS工艺中设计的不同电路的仿真结果证明了所提出的超高阻值伪电阻的优势。
FM8502 是一款工作在电感电流临界模式的高精度降压型 LED 恒流驱动芯片,芯片内部集成 500V 功率开关且 具有 OVP 电压调节功能,可通过调节外置 OVP 电阻阻值来设置 Vovp 电压值,另外,芯片 ROVP 引脚带 Enable 功能,可兼容开关调色应用。 FM8502 内置了高精度的采样、补偿电路和高压 JFET 供电技术,无需启动电阻和 VCC 电容,使得系统外围十分简单,在实现高精度恒流控制的前提下,最大限度的节约了系统成本和体积,可 广泛应用于 LED 球泡灯、 LED 蜡烛灯、 LED 日光灯管及其它非隔离降压型 LED 照明驱动领域。
3. 一根导线连接到阻值为 R 的电阻器上,形成一个宽度为 L 、长度为 2L 的矩形环路。对环路施加外力,使环路始终以恒定速度沿 +x 方向移动,如图 1 所示。然后,环路进入区域 1,该区域具有大小为 B 的外部均匀磁场,磁场方向为 -:- 方向。区域 1 以 .x • L 和 .x • 2.SL 为边界。环路随后进入区域 2,该区域具有两个外部均匀磁场,每个磁场的幅度为 1F,彼此平行,但方向相反。区域 2 以 .x • 2.SL 和 .x • 3.SL 为边界。点 S 是环路前缘的中点,与区域 2 中分隔两个磁场的水平边界对齐。
温度阈值设置步骤 1 . 选择 NTC 电阻,默认 103AT , B=3435 2 . 确定充电过温保护阈值,如: 50°C 3 . 根据 NTC 电阻的曲线图,找到 50°C 对应的电阻值,如 4.15k 4 . 使用 10 倍阻值的正常电阻连接至 RCOT 引脚,即 41.5k 5 . 放电过温保护设置使用相同的方法,但电阻需连接至 RDOT 引脚 6 . 充电低温保护设置使用相同的方法,但电阻需连接至 RUT 引脚 7 . 若充电低温阈值为 0°C ,放电低温保护阈值为 0°C-20°C = -20°C 8 . 详细电路请参考应用电路,通过选择电阻来设定合适的保护温度 对于采用非 103AT,B=3435 的 NTC 应用,配置电阻需要额外设置,设置方式请咨询赛微 FAE 获得更 多支持。
特殊说明 TM512AE0 单位 参数名称 参数符号 测试条件 最小值 典型值 最大值 低电平输出电流 Iol Vo =0.4V,ADRO 10 - - mA 高电平输出电流 Ioh Vo =4.6V,ADRO 10 - - mA 输入电流 Ii - - ±1 µA 差分输入共模电压 Vcm 12 V 差分输入电流 Iab VDD=5V 28 µA 差分输入临限电压 Vth 0V
现代高压功率 MOSFET 的发展催生了超快开关和超低电阻器件。最新的英飞凌 CoolMOS™ 第 7 代技术在 600 V 至 950 V 的电压等级范围内提供无可争议的一流 R DS(on)。英飞凌的技术领先地位不仅使新的更小封装(如 ThinPAK 5x6 或 SOT-223)成为可能,而且还使现有封装中 R DS(on) 值小得多的 CoolMOS™ 产品成为可能。仅在十年前生产的类似功率半导体需要至少三倍的面积才能实现相同的性能。换句话说,前几代功率 MOSFET 的 R DS(on) 至少是现代 CoolMOS™ 第 7 代芯片(具有相同的芯片面积)的三倍。然而,SJ MOSFET 技术向超快开关发展的进步也带来了某些缺点。尽管现代高压 SJ MOSFET 因其开关模式 (SM) 操作而受到赞赏,但它们也存在一些不适合某些应用的局限性。有两个特点值得注意:首先,最新的 HV SJ MOSFET 的安全工作区 (SOA) 图变窄了。面积减小的原因是,对于给定的通道上电阻 (R DS(on) ),当今最先进的功率 MOSFET 使用的硅片面积要小得多。不幸的是,这也意味着特定 R DS(on) 的功率处理能力 (P tot ) 会降低,因为热阻值 (R th 和 Z th ) 会随着芯片面积的减小而增加。这可以用以下公式来解释:
R160 - SUNKKO T-685 电池和电池组测试仪使用说明亲爱的客户,感谢您的信任并购买本产品。本使用说明书为产品的一部分。它包含有关将产品投入运行和操作的重要说明。如果您将产品传递给其他人,请确保也向他们提供这些说明。请保留本手册,以便随时再次阅读!本产品是顺应电池行业的发展而开发的针对低阻大容量锂电池的检测及高速分选。内阻的单位一般为mΩ。内阻较大的电池在充放电过程中,内部功耗会很大,而且发热严重,会造成锂离子电池老化衰减加速,同时也限制了高倍率充放电的使用。内阻越低,锂离子电池的寿命越长,倍率性能越好。通过测量内阻可以检查出好电池、坏电池以及相同的电池。在组装电池组时,需要对电芯容量、内阻、电压进行检查和匹配。电池组的性能取决于最差的电池单元。概述:1、本仪器采用意法半导体公司进口高性能单晶微电脑芯片,结合美国“Microchip”高分辨率A/D转换芯片作为测量控制核心,以锁相环合成的精密1000Hz交流正电流作为测量信号源,施加于被测元件。产生的微弱压降信号经高精度运算放大器处理,再由智能数字滤波器分析出相应的内阻值。最后显示在一个大的点阵LCD显示屏上。 2、该仪器优点:准确度高、自动选档、自动极性识别、测量速度快、测量范围广。 3.该装置可同时测量电池(蓄电池)的电压和内阻。采用四线开尔文型测试探头,可以更好地避免测量接触电阻和导体电阻的干扰,具有良好的抗外界干扰性能,从而得到更准确的测量结果。 4.仪器具有与PC机串行通讯功能,可利用PC机对多个测量结果进行数值分析。 5.本仪器适用于各类电池交流内阻(0—100V)的精确测量,特别适合大容量动力电池的低内阻测量。 6、该设备适用于工程中的电池研发、生产及质量检测。产品特点:采用18位高分辨率AD转换芯片,确保测量准确;双5位显示,最高测量解析度值为0.1μΩ/0.1mv,精细度高;自动多单位切换,覆盖广泛的测量需求 自动极性判断及显示,无需区分电池极性 平衡开尔文四线测量探头输入,高抗干扰结构 1KHZ交流电流测量方式,精度高
本 IC 是锂离子 / 锂聚合物充电电池的高端保护 IC,包含高精度电压检测电路、延迟电路和三重升压充电泵,用于驱动外部充电 / 放电 FET。适用于保护 1 节锂离子 / 锂聚合物充电电池组免受过充电、过放电和过电流的影响。通过使用外部过电流检测电阻,本 IC 实现了高精度过电流保护,且受温度变化的影响较小。 特点 ● 高精度电压检测电路 过充电检测电压 3.500 V ~ 4.800 V (5 mV 进阶) 精度±15 mV 过充电解除电压 3.100 V ~ 4.800 V *1 精度±50 mV 过放电检测电压 2.000 V ~ 3.000 V (10 mV 进阶) 精度±50 mV 过放电解除电压 2.000 V ~ 3.400 V *2 精度±75 mV 放电过电流 1 检测电压 -3 mV ~ -100 mV (0.25 mV 进阶) 精度±1 mV 放电过电流 2 检测电压 -6 mV ~ -100 mV (0.5 mV 进阶) 精度±3 mV 负载短路检测电压 -20 mV ~ -100 mV (1 mV 进阶) 精度±5 mV 充电过电流检测电压3 mV ~ 100 mV(0.25 mV 进阶) 精度±1 mV 0 V 电池充电禁止电池电压 1.45 V ~ 2.00 V *3(50 mV 进阶) 精度±50 mV ● 过热检测功能:有、无 ● 带外置 NTC 热敏电阻的高精度温度检测电路(阻值:25°C 时 100 kΩ±1% 或 470 kΩ±1%,B 常数:±1%) 过热检测温度 +65°C ~ +85°C(5°C 进阶) 精度±3°C 过热释放温度 +55°C ~ +80°C(5°C 进阶)*4 精度±5°C ● 内置电荷泵:三重升压(调节电压 = V DD + 4.2 V) ● 检测延迟时间仅由内部电路产生(不需要外置电容器)。 ● 放电过电流控制功能 放电过电流状态的解除条件 : 断开负载、连接充电器 ● 0 V 电池充电 : 允许、禁止 ● 休眠功能 : 有、无 ● 省电功能 : 有、无 ● PS 端子内部电阻连接 通常状态下 : 上拉、下拉 省电状态下 : 上拉、下拉 ● PS 端子内部电阻值 : 1 MΩ ~ 10 MΩ (1 MΩ 进阶单位) ● PS 端子控制逻辑 : 动态 "H"、动态 "L" ● 高耐压 : VM 端子、CO 端子和 DO 端子 : 绝对最大额定值 28V ● 宽工作温度范围 : Ta = -40°C ~ +85°C ● 低消耗电流 工作时 : 6.0 µA 典型值、10 µA 最大值 (Ta = +25°C) 休眠时 : 50 nA 最大值 (Ta = +25°C) 过放电时 : 1.0 µA 最大值(Ta = +25°C) 省电时:50 nA(最大值) (Ta = +25°C) ● 无铅、Sn100%、无卤素 *5
当前的研究与开发:通过适当调整竞争相的体积分数,我们实现了创纪录的巨大磁阻值(在 90 kOe 外部磁场中约为 10 15 %)。之前世界上任何地方已知的 MR% 约为 10 7 %),以及半掺杂 Sm 0.5 Ca 0.25 Sr 0.25 MnO 3 锰氧化物化合物中的超尖锐亚磁转变 [NPG Asia Materials (IF: 10.76), 10 (2018) 923]。我们仅通过调整 PLD 制备的氧化物外延 Sm 0.5 Ca 0.25 Sr 0.25 MnO 3 薄膜中的应变(应变工程)就增强了磁阻 [J. Magn. Magn. Mater. 503 (2020) 166627]。开发了采用PLD在商用热氧化Si衬底上生长优质半金属La 0.7 Sr 0.3 MnO 3 超薄膜的“两步”技术,并观察到跨晶界的自旋极化传输 [J. Magn. Magn. Mater. 527 (2021) 167771]。制备了(Sm 1-y Gd y ) 0.55 Sr 0.45 MnO 3 (y = 0.5 和 0.7)化合物,并表明晶界处的自旋极化隧穿(SPT)传输机制对化合物低场磁阻的增强起着至关重要的作用 [J.Phys: Condens. Matter 33 (2021) 305601]。报道了纳米晶 (La 0.4 Y 0.6 ) 0.7 Ca 0.3 MnO 3 化合物中由粒径驱动的非格里菲斯相向格里菲斯相的改性以及磁阻的大幅增强 [J. Alloys & Compound 745 (2018) 753]。制备了铁磁性 (La 0.67 Sr 0.33 MnO 3 ) - 电荷有序 (Pr 0.67 Ca 0.33 MnO 3 )、核壳纳米结构,并在更宽的温度范围内观察到了较大的磁热熵变值 (-∆SM ) [J. Magn. Magn. Mater. 436 (2017) 97]。在室温附近观察到了 La 0.83 Sr 0.17 MnO 3 化合物中显著较大的磁热效应,可视为磁制冷材料 [Physica B 545 (2018) 438]。我们在制备的 BiGdO 3 化合物中展示了低温下的巨磁热效应(∆SM = 25 J kg -1 K -1 & ∆T= 14.8K),并解释了其由于短程磁关联的存在而产生的成因 [J. Alloys and Compounds 846 (2020), 156221]。我们利用磁热效应构建了所制备的单晶 Sm 0.50 Ca 0.25 Sr 0.25 MnO 3 化合物的复磁相图 [J. Magn. Magn. Mater. 497 (2020) 166066]。对采用移动溶剂浮区炉制备的单晶 Sm 0.5 Ca 0.25 Sr 0.25 MnO 3 化合物的磁相变进行了实空间成像,并观察到了亚微米长度尺度上的 AFM-FM 相的存在 [J.Phys: Condens. Matter 33(2021) 235402]。我们已经证明了核心和表面自旋之间的短程磁相互作用在纳米晶掺杂锰氧化物中的交换偏置和记忆效应中的主导作用 [J. Alloys and Compounds 870 (2021), 159465]。与通常使用的磁化数据相反,利用反常霍尔效应研究了 skyrmion 载体材料 Co 3.6 Fe 4.4 Zn 8 Mn 4 的临界行为和相图。这为使用反常霍尔效应研究 skyrmion 载体和其他薄膜多层、介观器件等中的临界现象开辟了新方向。这对 skyrmion 载体材料的开发和未来 skyrmionic 存储器件的开发大有裨益 [J. of Alloys and Compounds 960 (2023) 170274]。