Battery Show Europe: LANXESS to showcase comprehensive portfolio for battery production • LANXESS will be in Hall 10, booth 10-E70, at the exhibition and trade center in Stuttgart • Innovative products and solutions along the entire value chain for lithium-ion batteries • Precursors for the development of European supply chains for lithium iron phosphate (LFP) • Key raw materials for electrolyte conducting salts Cologne, June 12, 2024年 - 从6月18日至20日,Lanxess将在欧洲电池展上展示其广泛的产品,用于生产锂离子电池和电动性领域的应用。这些包括沿整个价值链的许多关键原材料和材料解决方案。斯图加特(Stuttgart)的活动是欧洲最大的专业贸易展览会,用于快速增长的电动性领域中最先进的材料,技术和生产过程。广泛的产品组合特种化学品公司的投资组合包括用于阴极材料和电解质组件的原材料,用于提取用于阴极材料的超纯色金属化合物的离子交换树脂,用于阴极材料和电池回收,冷却剂和着色剂,用于保护电子电池组合的高压应用以及用于保护电子电池组合的化合物。另一个关键产品区域具有高性能塑料和非易燃电解质的阻燃剂,有助于提高电池电池的安全性。根据运输局(T&E)在整个欧洲运营的运输与环境(T&E)的最新分析,供应链的转移,供应链从中国向欧洲的转移可能有助于减少生产电池期间释放的CO 2排放量,
摘要:尽管硫磺聚合物承诺具有独特的特性,但其受控的合成,尤其是在复杂且功能性架构方面,仍然具有挑战性。在这里,我们表明氧乙烷和苯基异硫氰酸苯二氮化的共聚物选择性地产生多硫二酰二酰二氧化物,作为一类新的含有分子量分布的硫酸盐,具有窄的分子量分布(m n = 5-80 kg/mol,用 ^ 1.2; mm n,max = 124 kg/mol)和高熔点;五个;氧乙烷和异硫氰酸盐的取代基模式。自核实验表明,苯基取代基,未取代聚合物主链的存在以及动力学控制的链接选择性是最大化熔点的关键因素。对宏链转移剂的耐受性增加和控制的传播允许合成双层晶体和两亲性二嵌段共聚物,可以将其组装成胶束和蠕虫样的结构中,并与水中的无律核心。相比之下,乙醇中结晶驱动的自组装会产生圆柱形胶束或血小板。
电子设备在从汽车和智能手机到医疗设备,设备等的所有事物中都起着至关重要的作用。随着新技术的快速进步和部署,使用旧一代硬件的设备很快就会过时,并丢弃了其最新同行的设备。例如,平均智能手机在升级前估计要有2 - 3年[29]。在2019年,电子产品的这种快速消费周期的电子废物量约为5360万吨(MT),预计该数字将在2030年每年迅速增长到74(MT)以上,使电子废物以每年2亿吨的2吨[9]成为增长最快的废物流。同时,电子废物的回收率每年仅增长0.4吨。电子产品是一些最复杂的废物流。这包括用于减少导电迹线的焊料或金和铜的熔点,半导体材料的熔点,例如用于高性能转移的半导体材料,例如用于高性能转移的木质材料,热塑性和热塑性树脂以及各种特种化学物质,例如阻燃剂。尽管这些材料对各自的应用具有理想的特性,但其中许多材料也具有剧毒,对人类健康和环境正义具有重大影响。复杂的性质和危险材料为回收施加了高昂的成本,这导致许多更富有,更发达国家将其电子垃圾发送到国外[30]。在这项工作中,我们探索了图。1。具体来说,我们可以创建一个完全圆形的生产cy-cle,其中可以通过自然生物周期回收,再生或再生电子产品?我们强调,设计包含可生物降解材料的真实设备的这种愿景不是依赖尚未发明的技术的抽象未来。在这项工作中,我们证明可以构建端到端功能鼠标,该端机鼠标结合了现有的可生物降解材料和制造技术。我们选择一只鼠标作为案例研究,并表明我们可以立即减少体现碳足迹并通过设计减轻电子废物的危害。我们通过可持续HCI(SCHI)[2,17,22]的镜头来解决电子废物的问题,并列出了我们在下面概述的设计和原型电子设计的四个指导原理:
摘要:在这项研究中,检查了内部染料具有抗菌特性的使用。硼酸(H 3 BO 3)具有抗菌作用,是一种便宜且易于获得的硼级化合物。在研究范围内,首先以适当浓度制备硼酸混合物,并通过将其添加到室内染料中进行抗菌染料生产研究。通过对大肠杆菌细菌的抑制作用及其抗菌活性进行了研究,然后测试了所获得的染料的抗菌特性,然后测试了其染料的亮度,密度,密度,薄膜厚度,粘性,铅笔硬度和染料的干燥时间以及对TS 5808/2012和这些染料的特征的适用性。结果表明,硼酸的抗菌作用对染料质量没有负面影响,而是保持染料的标准值。关键字:废物大理石粉,硼酸,抗菌材料。提交:2024年6月21日。接受:2024年8月26日。引用了这一点:Yurtalan,N.,Geyikçi,F。,&Uğuz,G。(2024)。硼酸添加对抗菌染料产生的影响。土耳其化学学会杂志,B节:化学工程,7(2),177-184。https://doi.org/10.58692/jotcsb.1503140 *通讯作者。电子邮件:numanyurtalan23@gmail.com。1。简介硼及其化合物经常在许多行业中使用。由于技术及其丰度,其应用程序最近在广泛的区域中传播。染料是保护材料表面,提供美学外观的建筑材料,同时还可以防止诸如生锈,污染,腐蚀等因素。是一种有色液体,由金属,有机和塑料色素,薄和结合剂组合形成(Özkan,2013)。硼酸(H 3 BO 3)是行业中使用最广泛的硼化合物之一,作为B 2 O 3的来源,用于制备许多含硼的化学物质,例如硼碳酸盐和硼酯。此外,它用于防腐剂,硼合金,阻燃剂,尼龙生产,摄影,纺织工业,玻璃和玻璃纤维生产,搪瓷和釉料。近年来,它还发现用作超级滑块。
哈佛 SEC 可持续发展之旅关键谈话要点 1. Behnisch Architekten 是一家知名的全球建筑公司,以设计可持续的创新型建筑而闻名,是 SEC 的建筑师。SEC 占地 544,000 平方英尺,包括 70,000 平方英尺的公共绿地。 2. 哈佛大学拥有全面的可持续发展愿景和一系列以研究和科学为基础的优先事项,我们的目标是与教师、学生、员工、校友和外部合作伙伴合作,将哈佛校园用作试验平台,试行和证明气候和可持续发展的解决方案。在我们的建筑环境中,我们致力于增进健康、应对气候变化和大规模改善公平性。 3. SEC 是一个试验平台,被称为最健康、最节能和最具气候适应力的实验室建筑之一。 • 获得 LEED 白金认证(弹性、雨水保留、节能和室内空气质量)。全球第一座获得严格、创新的材料、公平、美观生活建筑挑战认证的研究大楼和最大的建筑。 4. 该项目及其所连接的新区域能源系统是根据我们的气候目标建造的,即到 2026 年实现零化石燃料,到 2050 年实现无化石燃料。 5. SEC 的设计和建造在发出明确的市场信号方面发挥了特别重要的作用,通过成分标签透明化,指定需要去除的有害化学物质(如 PFAS、化学阻燃剂、抗菌剂),优化材料以有利于健康,特别是在产生有害化学物质和制造产品的上游。 气候:主要特点 高性能围护结构;高效气候、自然通风、实验室气流减少和热回收系统;低能耗水暖、辐射终端系统;新型智能程序分区。 为 SEC 供电的区域能源设施使用低温、热水、高效的热电联产供暖和制冷系统,旨在具有弹性和灵活性,可以过渡到 FFF。 DEF 使用一个容量为 130 万加仑的储水箱,在电力价格较低、污染较少的非高峰时段生产和储存冷冻水。储水箱就像一个电池,可以节省能源,以便在高峰时段使用,从而减轻电网的负担。
I.引言物质在环境上可接受的范围内被生物降解,这意味着已消除了其不良特性。(Arbeli,2007年)将特性的丧失称为生物转化。Propanil,也称为“ propacare”或“ Exponet pip-pip-pepanil”,是一种苯胺化合物,是由丙二酰基与3,4-二氯苯胺的氨基酸组的羧基的形式凝结产生的。这是一种出现后除草剂,没有残留作用。丙尼最有效地应用于易感的草和阔叶叶,它们在有利的土壤水分和天气条件下生长较小且积极生长。使用丙烷控制杂草可以消除杂草竞争,保守土壤水分,并通常有助于增加农作物的产量。除了稻田外,丙尼还用于土豆,小麦和棉田中的草杂草控制。分类的丙尼属于中等毒性(II类毒性),因为它可能会刺激眼睛和皮肤。在土壤中,Propanil生物降解释放3,4-二氯苯胺(DCA),通过微生物过氧化物酶进一步转化为3,3',4,4'-二氯苯甲苯(TCAB)(TCAB)和土壤中其他AZO产品。TCAB和3,3',4,4'-四氯亚氮苯苯(TCAOB)可能会在生长的土壤中积聚并浸入地下水中(Arbeli,2007)。研究环境因素对pH的影响对分离株丙烷降解的影响至关重要。知识有助于识别促进有效丙烷降解的最佳条件,从而制定量身定制的补救策略。各种产业,有机化合物用作杀虫剂,除草剂,抗生素,润滑剂或阻燃剂。农药是用于杀死害虫的化学物质,包括昆虫,啮齿动物,真菌和不需要的植物(杂草)。(Droz等人,2021年)可以是生物学剂,例如病毒,细菌,抗菌剂或消毒剂,以阻止,无能为力和杀死害虫。在公共卫生中使用的农药来消除蚊子等疾病媒介以及农业中的疾病,以消除损害作物的害虫。Based on their target organisms, mode of action, duration of effectiveness, or chemistry, pesticides are categorized as insecticides (targeting insects), bactericides (targeting bacteria), fungicides (targeting fungi), herbicides (targeting plants/weeds), nematocides and rodenticides (targeting rats, mites, squirrels, woodchucks, chipmunks, nutria and海狸)(Olivera等,2015)。
高 I/O 密度和绿色材料是倒装芯片和 3D IC 封装用封装基板的两大主要驱动力。未来的有机层压基板将需要 5-25 µ m 的线宽和间距以及 50-100 µ m 的封装通孔 (TPV) 间距。这种超细间距要求将因电化学迁移和导电阳极丝 (CAF) 而导致严重的基板故障。因此,有必要开发新型无卤材料并研究其在超细间距应用中的可靠性。这项工作主要集中在四个领域:1) 先进的无卤材料,2) 细线宽和间距中的表面绝缘电阻 (SIR),3) 细间距 TPV 中的导电阳极丝 (CAF),以及 4) 倒装芯片互连可靠性。本研究选择的基板材料包括在聚合物主链上加入无卤阻燃剂的树脂配方。在具有 50 µm 间距铜线的基板上研究了 SIR,并在具有 150 µm 和 400 µm 间距 TPV 的基板上研究了 CAF。在这两项测试中,都观察到无卤基板与溴化 FR-4 相比表现出更好的电化学迁移阻力。通过对测试基板进行热循环测试 (TCT)、无偏高加速应力测试 (U-HAST) 和高温存储 (HTS) 测试来研究倒装芯片可靠性。在每次可靠性测试后都进行扫描声学显微镜 (C-SAM) 分析和电阻测量。测试基板分别通过了 200 小时的 HTS、96 小时的 HAST 和 2000 次 TCT 循环。倒装芯片可靠性结果表明,这些材料有可能取代传统的卤化基板用于高密度封装应用。关键词:无卤素基板、表面绝缘电阻、导电阳极丝、倒装芯片可靠性 简介 电子产品向无卤素材料的转变始于 1994 年德国通过的《二恶英法》。从那时起,欧盟 (EU) 制定的生态标签成为印刷线路板采用无卤素材料的驱动力。卤素通常添加到 PWB 中使用的聚合物玻璃复合材料中以达到阻燃效果。然而,卤素材料在特定的燃烧条件下会形成多溴二苯并二恶英 (PBDD) 和多溴二苯并呋喃 (PBDF),这会对环境和健康造成严重风险。在这方面,无卤材料比卤素材料优越得多,并且在回收过程中也很有用 [1]。印刷电路板研究所
微塑料(MPS)由于在不同的环境室(包括大气,水生和陆地)的不同环境室中的出现而被视为新兴污染物。它们被定义为塑料颗粒的大小从1 µm到5 mm,并且在各种类型,尺寸,形状以及一级和次级聚合物组成中都有发现(Miri等,2022; Thakur等,2023)。微塑料(MPS)由于其持续性和生物蓄积而被认为对野生动植物和人类有害。这归因于在制造过程中添加各种物质,例如色素,增塑剂和粉状阻燃剂。此外,由于它们的化学物理特性,它们具有很高的耐用性,需要在环境中延长降解(Cai等,2023; Niu等,2023)。因此,自1950年代以来,该行业的塑料生产一直在进行,年产量达到约200万吨,因此2015年的产量显着增加到每年3.8亿吨。结果,从1950年到2015年,生产了大约78亿吨塑料,从而产生了约63亿吨的废物。在过去的70年中,全球塑料产量已从150万吨增加到约3.59亿吨,估计预测到2025年达到5000万吨。由于微塑料越来越污染环境,食物链也受到了显着影响。这些颗粒已直接或通过营养转移进入食物链。这一趋势引起了民间社会内部的显着关注,因为国会议员主要是通过较大的聚合物降解而产生的,这一过程受到物理,化学或生物学因素的影响(Cverenkárová等,2021; Torena et al。,Torena等,2021; 2021; Villalobos et al。,20222; 2022; 2022; OSMAN et al al al an a al et a al a al et a al et a al a al,2022; osman et al。塑料污染发生在无脊椎动物中,例如多齿,51种甲壳类动物,棘皮动物,双壳类和脊椎动物,包括鱼,海鸟和哺乳动物。的确,微型污染引起的主要关注点之一是其在消化道中的生物蓄积效应(Cverenkárová等,2021)。微塑料(MPS)由于管理和倾销做法不佳而通过各种途径进入环境。但是,可以采用一些机制来控制它们在环境中的存在,例如生物,热和光催化降解。生物降解是通过使用不同类型的微生物而发生的,因为有些人有可能在生物修复过程中使用(Park and Kim,2019)。这些微生物在自然界中广泛分布,由于细菌的快速繁殖,多样化的营养能力,强大的适应能力以及降解MPS的显着潜力。它们在自然环境中降解的MPS,例如聚乙烯二甲酸酯(PET),聚乙烯(PE)和聚丙烯(PP)(Yuan等,2020; Li等,2022)。因此,当存在于尽管聚合物具有相对简单的化学结构,但它们以其对生物降解的高抗性而闻名,尤其是由于它们的疏水结构,高分子量和缺乏有利的功能组。
1- Yeole,S。P。; Jadhav,P。S。; Joshi,G。M.表面活性剂改性石墨烯及其基于衍生物的聚合物纳米复合材料的最新情况 - 综述。 巨摩尔。 化学。 物理。 ,2023,224,2300122。 2 Imtiaz,s。; Siddiq,M。; Kausar,A。; Muntha,S.T。; Ambreen,J。; Bibi,I。 碳纳米管(CNT)增强聚合物和环氧纳米复合材料的制造,特性和应用的评论。 中文J. Polym。 SCI。 ,2018,36(4),445-461。 3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。 评论。 compos。 A部分appl。 SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。1- Yeole,S。P。; Jadhav,P。S。; Joshi,G。M.表面活性剂改性石墨烯及其基于衍生物的聚合物纳米复合材料的最新情况 - 综述。巨摩尔。化学。物理。,2023,224,2300122。2 Imtiaz,s。; Siddiq,M。; Kausar,A。; Muntha,S.T。; Ambreen,J。; Bibi,I。 碳纳米管(CNT)增强聚合物和环氧纳米复合材料的制造,特性和应用的评论。 中文J. Polym。 SCI。 ,2018,36(4),445-461。 3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。 评论。 compos。 A部分appl。 SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。2 Imtiaz,s。; Siddiq,M。; Kausar,A。; Muntha,S.T。; Ambreen,J。; Bibi,I。碳纳米管(CNT)增强聚合物和环氧纳米复合材料的制造,特性和应用的评论。中文J. Polym。SCI。 ,2018,36(4),445-461。 3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。 评论。 compos。 A部分appl。 SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。SCI。,2018,36(4),445-461。3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。评论。compos。A部分appl。SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。SCI。制造。,2015,73,204-231。4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。碳,2021,173,1020-1040。5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。Nanoscale,2016,8(26),12977-12989。6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。6 Yu,L。M。; Huang,H。X.使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。聚合物,2022,247,124791。7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。polym。测试。,2023,124,108068。8 Wang,Y。X。; Yue,Y。; Cheng,f。; Cheng,Y。F。; GE,B.H。; N. S. Liu; Gao,Y。H. Ti 3 C 2 t x基于MXENE的柔性压电物理传感器。 ACS Nano,2022,16(2),1734-1758。 9 Sheng,X。X。; Zhao,Y。F。;张,L。; lu,X。 二维Ti 3 C 2 MXENE/热塑性聚氨酯纳米复合材料的性能,并通过熔体混合有效增强。 compos。 SCI。 技术。 ,2019,181,107710。 10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。8 Wang,Y。X。; Yue,Y。; Cheng,f。; Cheng,Y。F。; GE,B.H。; N. S. Liu; Gao,Y。H. Ti 3 C 2 t x基于MXENE的柔性压电物理传感器。ACS Nano,2022,16(2),1734-1758。9 Sheng,X。X。; Zhao,Y。F。;张,L。; lu,X。 二维Ti 3 C 2 MXENE/热塑性聚氨酯纳米复合材料的性能,并通过熔体混合有效增强。 compos。 SCI。 技术。 ,2019,181,107710。 10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。9 Sheng,X。X。; Zhao,Y。F。;张,L。; lu,X。二维Ti 3 C 2 MXENE/热塑性聚氨酯纳米复合材料的性能,并通过熔体混合有效增强。compos。SCI。 技术。 ,2019,181,107710。 10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。SCI。技术。,2019,181,107710。10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。巨摩尔。mater。eng。,2020,305,2000343。11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。J.胶体界面科学。,2022,606,223-235。12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。compos。A部分appl。SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。SCI。制造。,2023,168,107486。13陈梦杰,李志健,周宏伟,刘汉斌。细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。高分子学报,2023,54(11),1740-1752。14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。高分子学报,2022,53(6),617-625。15 Dong,H。; Sun,J.C。; Liu,X。M。; Jiang,X。D。; Lu,S。W.具有双层导电结构的高度敏感和可拉伸的MXENE/CNT/TPU复合应变传感器,用于人类运动检测。 acs appl。 mater。 接口,2022,14(13),15504-15516。 16 Wang,H。C。; Zhou,R。C。; Li,D。H。;张,L。R。; Ren,G。Z。; Wang,L。; Liu,J.H。; Wang,D.Y。; Tang,Z。H。; lu,G。; Sun,G。Z。; Yu,H。D。; Huang,W。基于碳纳米管的高性能泡沫形状应变传感器和Ti 3 C 2 t x Mxene,用于监测人类活动。 ACS Nano,2021,15(6),9690-9700。 17 Su,F。C。; Huang,H。X. 具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。 acs appl。 mater。 接口,2023,15(48),56328-56336。 18田信龙,黄汉雄。 具有较高回弹性的poe基微孔复合材料的传感性能。 高分子学报,2023,54(2),235-244。15 Dong,H。; Sun,J.C。; Liu,X。M。; Jiang,X。D。; Lu,S。W.具有双层导电结构的高度敏感和可拉伸的MXENE/CNT/TPU复合应变传感器,用于人类运动检测。acs appl。mater。接口,2022,14(13),15504-15516。16 Wang,H。C。; Zhou,R。C。; Li,D。H。;张,L。R。; Ren,G。Z。; Wang,L。; Liu,J.H。; Wang,D.Y。; Tang,Z。H。; lu,G。; Sun,G。Z。; Yu,H。D。; Huang,W。基于碳纳米管的高性能泡沫形状应变传感器和Ti 3 C 2 t x Mxene,用于监测人类活动。 ACS Nano,2021,15(6),9690-9700。 17 Su,F。C。; Huang,H。X. 具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。 acs appl。 mater。 接口,2023,15(48),56328-56336。 18田信龙,黄汉雄。 具有较高回弹性的poe基微孔复合材料的传感性能。 高分子学报,2023,54(2),235-244。16 Wang,H。C。; Zhou,R。C。; Li,D。H。;张,L。R。; Ren,G。Z。; Wang,L。; Liu,J.H。; Wang,D.Y。; Tang,Z。H。; lu,G。; Sun,G。Z。; Yu,H。D。; Huang,W。基于碳纳米管的高性能泡沫形状应变传感器和Ti 3 C 2 t x Mxene,用于监测人类活动。ACS Nano,2021,15(6),9690-9700。17 Su,F。C。; Huang,H。X. 具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。 acs appl。 mater。 接口,2023,15(48),56328-56336。 18田信龙,黄汉雄。 具有较高回弹性的poe基微孔复合材料的传感性能。 高分子学报,2023,54(2),235-244。17 Su,F。C。; Huang,H。X.具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。acs appl。mater。接口,2023,15(48),56328-56336。18田信龙,黄汉雄。具有较高回弹性的poe基微孔复合材料的传感性能。高分子学报,2023,54(2),235-244。
许多日常物品的存在归功于塑料,塑料是一种多功能材料,具有许多应用。从包装到建筑,医疗保健到电子产品,塑料已经彻底改变了各种行业。但是,了解其行为,尤其是其熔点,对于利用其全部潜力至关重要。塑料由聚合物组成,具有重复亚基的大分子,赋予其独特的特性,例如柔韧性和可可性。熔点是指塑料从固体到液态的温度,确定其在各种应用中的变形,可回收性和利用率。理解塑料熔点的重要性不能被夸大。它影响了行业和日常使用的处理,绩效和结构完整性。知道塑料转化的温度范围对于确保其功能和质量至关重要。在本文中,我们将深入研究理解塑料熔点的重要性,影响它的因素,塑料的常见类型及其各自的熔点以及这些知识的实际应用。了解塑料的熔点是至关重要的,这是由于其在行业和日常生活中的深远影响。此特征是影响塑料材料的处理,塑形和性能的关键参数。*质量控制:了解熔点可确保塑料在其指定的温度范围内处理,从而维持最终产品的结构完整性和功能性能。绝对!这就是为什么理解此属性至关重要的原因: *制造过程:知道塑料的熔点对于工业过程至关重要,决定将其模制或形成特定形状的温度。*产品开发:工程师和产品设计师依靠对熔点的知识来创建创新和耐用的产品,并根据其熔化特性选择适当的塑料材料。塑料的熔点是回收过程中的关键因素,因为它决定了有效加工的最佳温度。不同的塑料具有不同的熔点,需要特定条件才能有效回收它们。通过了解这些熔点,回收设施可以优化其流程,从而通过减少废物和支持循环经济来促进环境可持续性。此外,了解塑料的熔点对于确保塑料暴露于高温(例如汽车或电子设备)的应用中至关重要。此外,消费者对塑料熔点的意识使个人有能力做出有关使用和照顾塑料产品的明智决定。这种理解可以帮助避免将塑料暴露于可能导致变形或释放有害物质的条件下,从而促进产品的寿命和安全性。塑料的熔点受几个关键因素的影响,包括聚合物的分子结构,其分子量,结晶度和组成程度。不同类型的塑料表现出不同的特性和融化行为。例如,与高度分支或交联的聚合物相比,具有最小分支的线性聚合物的熔点往往更高,而分子量较高的聚合物通常需要更多的能量才能融化。塑料的热行为受链结构,组成和外部因素的影响。与随机共聚物相比,由于聚合物链相互作用的变化,与随机共聚物相比,单体单元具有特定排列的共聚物可以表现出明显的熔点。添加剂,例如增塑剂,阻燃剂和增强剂可以改变聚合物基质内的分子间相互作用,从而影响其熔融行为。填充剂和钢筋会影响热导率,结晶动力学以及最终的熔点。了解分子结构,组成和外部影响之间的复杂相互作用对于在各种应用中选择和加工塑料至关重要。例如: *低密度聚乙烯(LDPE)的熔点范围从105°C到115°C,使其适用于包装膜和容器。*高密度聚乙烯(HDPE)在130°C至135°C附近具有较高的熔点,从而在管道,瓶子和工业容器中使用。*聚丙烯的高熔点范围从160°C到170°C,非常适合汽车组件,医疗设备和食品容器。*聚氯乙烯的熔点范围为100°C至160°C,具体取决于配方和添加剂,适用于管道,电缆绝缘和建筑材料。塑料可以分为结晶和无定形类型。*通用聚苯乙烯(GPP)在200°C至220°C的近似熔点上表现出熔点,使其适用于注入成型和挤出过程,并在消费品,包装和可支配的餐具中应用。*高影响的聚苯乙烯(臀部)的熔点略低,范围从180°C到200°C,使其适用于冰箱衬里和包装材料。*聚对苯二甲酸酯在250°C至260°C附近具有相对较高的熔点,使其成为饮料瓶,食物包装和合成纤维的首选。*聚碳酸酯表现出较高的熔点,范围为250°C至300°C,具有出色的冲击力和透明度,适用于各种应用。塑料材料的清晰度使其适合各种应用,要求耐用性和透明度,包括眼镜,电子组件和汽车零件。ABS热塑性的中等熔点,通常从210°C到240°C,使其可以在强度,抗冲击力和可加工性之间取得平衡。这种多功能性在汽车,电子和消费品等行业中具有多种用途。了解塑料的温度范围对于关于材料选择,处理参数和应用适用性的知情决策至关重要。这种知识是利用塑料独特特性的基础,同时确保各个行业的最佳性能。温度范围在制造,包装,建筑,医疗保健和汽车等应用中起关键作用。但是塑料到底是什么?在制造业中,知道温度范围可以精确控制注射成型和挤出。在包装中,选择具有特定温度的塑料材料可确保产品完整性和安全性。消费品,例如厨具和电子产品,需要可以承受不同热条件的塑料。建筑和基础设施应用需要热稳定性和对温度波动的抗性。在医疗保健中,精确的温度特征对于医疗设备,设备和药品包装至关重要。了解温度范围可确保在各种存储条件下进行灭菌,安全使用和产品完整性。在汽车和航空航天部门中,温度范围显着影响内部和外部组件的材料选择。在车辆内部,外部装饰和飞机室内装饰中使用的材料必须承受温度波动,紫外线暴露和机械应力。工程师需要了解温度范围的知识,以选择满足苛刻应用中性能要求的塑料。了解温度范围对于通过回收和废物管理促进环境可持续性至关重要。不同的塑料需要特定的温度才能有效回收过程,从而产生高质量的回收材料。这些知识支持可持续实践,减少塑料废物并促进循环经济。该基础对于开发具有增强热特性的尖端塑料至关重要。在研发中,了解温度范围为材料科学和聚合物工程的创新提供了创新,可以实现新颖的配方,高级加工技术和量身定制的特性。这些知识的应用是多种多样的,包括行业,消费产品,可持续性计划和技术进步。塑料的熔点是一个至关重要的方面,它推动了聚合物研究,可持续制造实践和高性能材料的发展。这个基本财产对包括包装,建筑,电子和汽车的各种行业具有深远的影响。热塑性塑料在加热时可以多次重塑,取决于其化学成分的变化。相反,热固性塑料经历了一种化学反应,可在高温下不可逆地治愈它们。熔点的确定涉及观察物质从固体通过加热过渡到液态的温度。通过认识到熔点的重要性并接受对温度范围的整体理解,我们可以利用塑料材料的全部潜力,同时确保其负责任地融入我们的现代世界。(注意:我使用“写为非母语说话者(NNES)”此文本的重写方法。)可以通过确定其熔点或范围来评估固体有机化合物的纯度。这种方法在化学,药物和材料科学等各个领域至关重要。塑料的熔化特性取决于其分子的排列。晶体塑料具有固定的熔点,而无定形的塑料缺乏特定的熔点,并在加热时会逐渐软化。无定形塑料表现出类似于无定形材料的熔融行为。然而,在冷却和凝固过程中,聚乙烯,聚丙烯和聚乙烯甲基晶体形成晶体区域,影响其熔化过程。加热时,塑料过渡到三个状态:玻璃状状态,橡胶状态和粘性流状态。过渡以四个关键温度标记:玻璃过渡温度,熔化温度,分解温度和流动温度。熔化温度范围取决于塑料的分子结构复杂性。某些塑料的特性包括:塑料的熔化温度受影响其热特性和行为的各种因素的影响。这些关键因素包括:•化学结构:聚合物的分子组成显着影响其熔化温度,不同类型的塑料表现出不同的熔点。•碳氢化合物含量:含有更多碳氢化合物基团的塑料往往具有较高的熔融温度,例如聚乙烯(PE)。•官能团:酯,酰胺或醚键的存在可以改变熔化温度,聚合物(如聚酯和聚酰胺)等聚合物由于强分子间力而具有较高的熔点。例子包括聚丙烯(PP)和高密度聚乙烯(HDPE)。•结晶度:结晶塑料的分子以高度有序的模式排列,增加对热的耐药性并导致较高的熔融温度。无定形塑料具有随机的分子排列,导致温度降低。•共聚物组成:ABS等共聚物中单体的质量比可以影响熔化温度,从而允许定制的热性能。•添加剂:制造过程中引入的耐热添加剂可以改变塑料的熔化温度。塑料的熔化温度在其制造和加工中起着至关重要的作用。热稳定器可以提高这种温度,从而提高热稳定性和对高温应用的适用性。相反,增塑剂降低了熔点,提高了柔韧性和加工性。填充剂(例如玻璃纤维或矿物填充剂)会影响热性能,有时由于结构完整性增强而增加熔化温度。了解熔化温度对于确定适当的塑料形成方法,例如注入成型,挤出和吹塑方法至关重要。超过熔化温度会导致塑料特性的降解,变形和不良变化。在制造和加工中,控制推荐的熔化温度范围可确保塑料产品的稳定性和质量。熔化温度是在塑料材料制造和加工过程中实现所需特性,尺寸准确性以及结构完整性的指南。对霉菌温度和熔体温度如何共同起作用以产生最佳零件质量的深刻理解是必不可少的。将较低的熔体温度与较高的霉菌温度相结合通常会导致最佳性能。建筑行业在很大程度上依赖于管道,配件,绝缘和结构成分的高熔点的塑料。塑料(如聚氯化物(PVC),聚乙烯(PE),膨胀的聚苯乙烯(EPS)提供热绝缘,可承受高温和压力,并且易于塑造成不同的形状。在包装领域,熔化温度决定了用于容器,瓶子和其他应用的塑料的使用。塑料的熔点在确定其对各个行业的各种应用的适用性方面起着关键作用。例如,具有较低熔点的塑料(例如LDPE)非常适合包装冷冻食品或在低温下存储的其他物品,因为它们保持柔韧性且在寒冷条件下具有抗性。相比之下,具有较高熔点(如PP)的塑料是涉及高温存储的包装,因为它们可以承受升高的温度而不会变形。在电子行业中,塑料的熔点对于回收和性能都至关重要。具有较低熔点(如PS)的塑料通常用于生产容易回收的套管和组件,而具有较高熔点的塑料(例如聚酰亚胺)对于制造电路板和需要承受高操作温度的组件至关重要。在医疗部门,塑料被广泛用于制造各种设备和仪器。具有较低熔点(如PVC)的塑料适合生产可回收的可重复使用的医疗设备,而具有较高熔点(例如PTFE)的塑料(例如PTFE)对于需要消毒和高耐用性,可确保患者安全性和设备寿命的设备更为优选。塑料的熔点还显着影响消费品的生产。较低的熔点塑料(如PE)通常用于生产负担得起的家居用品和玩具,因为它们的成本效益和易于处理,而高级消费品(如厨具)(如厨具)通常使用具有较高熔点的塑料,例如PC,例如PC,提供增强的耐用性和耐热性和耐热性。在纺织工业中,塑料纤维的熔点对于制造织物和衣服至关重要。塑料(如聚酯纤维)具有相对较高的熔点,用于生产耐用,抗皱纹的织物,可以在高温下重复洗涤和干燥。用于专门应用,例如耐火服装,诸如芳香纤维(例如Kevlar)之类的材料可提供极大的保护和火焰。在汽车和航空航天扇区中,具有高熔点的塑料对于需要高耐用性和耐热性(例如汽车车身和飞机机身)的制造承重组件至关重要。通过理解并根据其熔点选择适当的塑料材料,行业可以确保其产品的最佳性能,安全性和寿命。在Boyi,我们为提供迎合各种行业的一流注射成型服务而感到自豪。 我们的尖端机器和创新技术可确保每种产品的精确度和一致性。 与我们合作,并体验质量,精度和服务的差异。 让我们通过首屈一指的注射成型服务来使您的视野栩栩如生。 立即与我们联系以了解更多信息并开始您的下一个项目。 在短短2个小时内,我们的工程师将与您联系,以进一步讨论您的项目。 塑料的熔点取决于其类型和化学成分。 例如,低密度聚乙烯(LDPE)在约115-135°C(239-275°F)的融化中,而高性能塑料(如聚醚乙醚酮(PEEK))可以具有高达343°C的熔点(649°F)。 特定的熔点取决于聚合物的分子结构和其他因素。 添加剂会影响塑料的熔点吗? 可以添加热稳定剂以增加塑料的熔化温度,从而增强其热量应用的热稳定性。 在另一侧,增塑剂可以降低熔点,从而提高材料的柔韧性和易于处理。 填充剂和增援部队也会影响热特性,有时由于增加的结构完整性而增加熔点。在Boyi,我们为提供迎合各种行业的一流注射成型服务而感到自豪。我们的尖端机器和创新技术可确保每种产品的精确度和一致性。与我们合作,并体验质量,精度和服务的差异。让我们通过首屈一指的注射成型服务来使您的视野栩栩如生。立即与我们联系以了解更多信息并开始您的下一个项目。在短短2个小时内,我们的工程师将与您联系,以进一步讨论您的项目。塑料的熔点取决于其类型和化学成分。例如,低密度聚乙烯(LDPE)在约115-135°C(239-275°F)的融化中,而高性能塑料(如聚醚乙醚酮(PEEK))可以具有高达343°C的熔点(649°F)。特定的熔点取决于聚合物的分子结构和其他因素。添加剂会影响塑料的熔点吗?可以添加热稳定剂以增加塑料的熔化温度,从而增强其热量应用的热稳定性。在另一侧,增塑剂可以降低熔点,从而提高材料的柔韧性和易于处理。填充剂和增援部队也会影响热特性,有时由于增加的结构完整性而增加熔点。