注 1 SMR 反应堆容量 100 MW。资料来源:安永分析;国家电网 FES 数据注 2 工艺效率 70%。注 3 仅 SMR 资本支出。不包括将“灰色”氢转化为“蓝色”氢所需的碳捕获技术额外资本支出。9
作为批准外大陆架 (OCS) 可再生能源设施及其组件 1 选址计划的一部分,美国内政部海洋能源管理局 (BOEM) 要求承租人提交社会和经济条件信息,包括可能受承租人拟议活动影响的“休闲和商业捕鱼(包括典型的捕鱼季节、位置和类型)”(请参阅:场地评估计划 (SAP) 的 30 CFR 585.611(b)(7);建设和运营计划 (COP) 的 30 CFR 585.627(a)(7);以及一般活动计划 (GAP) 的 30 CFR 585.646(b)(7))。此外,30 CFR 585.610(a)(8) 和 585.626(b)(15) 分别要求 SAP 和 COP 包含项目特定信息,包括避免、最小化、减少、消除和监测环境影响的拟议缓解措施。法规中要求的信息有助于 BOEM 遵守《外大陆架土地法》 (OCSLA) (43 USC § 1337p))、《国家环境政策法》 (NEPA) 和其他相关法律。未能在 SAP、COP 或 GAP 中提交必要的信息可能会导致延迟、计划不获批准或计划批准附加条款和条件。另请参阅 30 CFR 585.633(a)、585.633(b)(2) 和 585.628(f))。 2013 年至 2014 年间,BOEM 在缅因州至北卡罗来纳州举办了一系列研讨会,以确定最佳管理实践 (BMP) 和缓解措施,以减少
摘要:随着海洋可再生资源开始成为可行的能源,研究流体动力学和形态动力学过程对近岸的影响变得至关重要。作为在 T ELEMAC-3D 和 S ISYPHE 模块的数值建模环境中实施涡轮机的一部分,我们进行了为期 10 年的运行,以评估涡轮机对流动的近岸影响。我们使用了五个标准来定义可行的位置。涡轮机位置被添加到与流体动力学模型耦合的转换能量模型中,以便正确开发能量转换过程中的流动变化。结果表明,在三个选定地点,涡轮机并没有平等地转换场地内的电流能量。事实上,位于农场外侧的涡轮机产生了更高的转换率。这对近岸产生了以下影响:(1) 洋流强度的降低导致水柱发生强烈调整,打破了垂直环流的自然模式;(2) 横向流动的发展随着时间的推移影响底部动力学并导致沉积物沉积的变化; (3)由于流动的发散,涡轮机场周围的推移质输送率增加。理想化的涡轮机场在 10 年内生产了 1,775 吉瓦时的电力,在此期间可以为 54,181 户居民提供电力。
摘要:在此,我们开发了一个框架来理解第一部分中提出的观测结果。在这个框架中,由于随着水深 H 的减小幅度受限,内潮在变浅时会饱和。从这个框架可以推导出内潮平均能量的估计值;具体来说,能量 h APE i 、能量通量 h FE i 和能量通量发散 › xh FE i 。由于我们观察到耗散 h D i ' › xh FE i ,我们也将 › xh FE i 的估计值解释为 h D i 。这些估计值代表了内潮在内大陆架饱和时的能量参数化。参数化完全取决于深度平均分层和水深测量。总结一下,h APE i 、h FE i 和 › xh FE i 的跨陆架深度依赖性与冲浪区浅滩表面重力波的依赖性类似,这表明内陆架是内潮汐的冲浪区。针对一系列数据集对我们的简单参数化进行的测试表明,它具有广泛的适用性。
内大陆架是冲浪区和中大陆架之间的区域,表面和底部边界层 (BBL) 在此汇合甚至重叠 ( Lentz 1994 )。在这里,横岸风有助于跨内大陆架的输送 ( Fewings 等人 2008 ),而中大陆架的输送则由埃克曼动力学引起的沿岸风驱动。内大陆架的另一个先前未研究过的显著特征是,内大陆架是内潮汐几乎失去所有能量的区域。后者是我们在这里的重点,并引出了内大陆架作为内潮汐冲浪区的作用的新区分 ( Becherer 等人 2021 ,以下简称第二部分 )。这种内部冲浪区,其中内部潮汐以受水深限制的饱和状态存在,具有与表面重力波冲浪区类似的特征(Thornton 和 Guza 1983;Battjes 1988)。内部潮汐要么在当地产生(Sharples 等人 2001;Duda 和 Rainville 2008;Kang 和 Fringer 2010),要么在传播路径较长的偏远地区产生(Nash 等人 2012;Kumar 等人 2019),将大量能量传输到内架(Moum 等人 2007b;Kang 和 Fringer 2012)。在这里,能量被湍流耗散,产生斜压混合,从而导致水体转化。在内架上,内部潮汐在驱动
AOL 航空障碍灯 BLM 土地管理局 BMP 最佳管理实践 BOEM 海洋能源管理局 CEQ 环境质量委员会 CFR 联邦法规 COP 建设和运营计划 DOI 美国内政部 DTT 贸易和工业部 EIS 环境影响声明 EPAct 2005 年能源政策法 ft 英尺(英尺) GIS 地理信息系统 GLVIA3 景观和视觉影响评估指南,第 3 版 IEAA 环境管理与评估研究所 in. 英寸 km 公里 KOP 关键观察点 LCA 景观特色区域 LI 景观研究所 LOR 法律、条例和法规 m 米 mi 英里 MNL 航海照明 MW 兆瓦 MWh 兆瓦时 NEPA 1969 年国家环境政策法 NHPA 国家历史保护法 nm 海里 NPS 国家公园管理局 NHRP 国家历史名胜名录 OCA 海洋特色区域 OCS 外部大陆架 OCSLA 外大陆架土地法 PDE 项目设计范围 RFPA 合理可预见的计划行动 SCA 海景特色区域 SLIA 海景/景观影响评估 SLVIA 海景/景观和视觉影响评估 USFS 美国森林服务局 VIA 视觉影响评估 ZTV 理论可视区
2021年1月的作者:帕梅拉·H·洛林(Pamela H. Loring),美国鱼类和野生动物服务局(USFWS),迁徙鸟类部,哈德利(Hadley),马·阿里尔·K·伦斯克(Ma Ariel K.海洋环境的化学与生物学,大学。of Oldenburg, Germany Marley Aikens, Trent University, Peterborough, ON, Canada Alexandra M. Anderson, Trent University, Peterborough, ON, Canada Yves Aubry, Canadian Wildlife Service, Québec, QC, Canada Evan Dalton, Manomet Inc., Manomet, MA, USA Amanda Dey, New Jersey Division of Fish and Wildlife, Trenton, NJ, USA Christian弗里斯(Friis),加拿大野生动物服务局,多伦多,安大略省,加拿大戴安娜·汉密尔顿,艾里森山大学,萨克维尔,NB,加拿大,丽贝卡·霍尔伯顿,缅因州缅因州大学,奥罗诺大学,美国,美国,美国杜布拉·克里恩斯基,纽约市奥杜邦,纽约州纽约州纽约州纽约州纽约州纽约州,美国戴维·米兹拉希(New dy david) Partnerships LLC,新泽西州格林威治,美国凯特琳·帕金斯,纽约市奥杜邦,纽约,纽约,美国,美国,朱莉·帕奎特,加拿大野生动物服务局,萨克维尔,NB,加拿大菲西西亚·桑德斯,南卡罗来纳州,南卡罗来纳州,南卡罗来纳州,麦克莱伦斯维尔,麦克莱伦维尔,美国南卡罗来纳州麦克莱伦·史密斯,美国,美国国家,美国国家 /地区。 CollègeDelaPocatière,LaPocatière,QC,加拿大加拿大Andrew Vitz,马萨诸塞州渔业与野生动物部,马萨诸塞州韦斯特伯勒,美国,美国,Paul A. Smith,环境与气候变化,加拿大科学与气候变化,加拿大,加拿大,加拿大,加拿大,加拿大,在Boem Intra Intra Intra Intra Intra Intra Intra Intra Intra-Agency Inno No.M18PG00021由美国内政部美国鱼类和野生动物服务部迁徙鸟类300 Westgate Center Br. Hadley博士,马萨诸塞州01035M18PG00021由美国内政部美国鱼类和野生动物服务部迁徙鸟类300 Westgate Center Br. Hadley博士,马萨诸塞州01035
摘要:使用 42 个系泊设备的温度和速度测量值来研究非线性内孔在穿过加利福尼亚中部内陆架时沿岸的变化。系泊设备于 2017 年 9 月至 10 月部署在 Point Sal 岬角近海。区域覆盖范围为 ; 沿岸 30 公里和 ; 沿岸 15 公里,跨越 9-100 米水深。除了调节区域分层的潮下过程外,内孔还产生了复杂的时空分层变异模式。在 50 米等深线处,内孔沿岸连续,长度约为数十公里,但锋面连续性的长度尺度在 25 米等深线处减小到 O(1 公里)。发现深度平均、带通滤波(从 3 分钟到 16 小时)的内部钻孔动能 (KE IB ) 沿钻孔前沿是不均匀的,即使是沿岸连续钻孔也是如此。沿钻孔 KE IB 变化的模式因每个钻孔而异,但 2 周平均值表明 KE IB 在 Sal 点附近通常最强。钻孔前方的分层影响钻孔的振幅和沿岸演变。数据表明,沿岸分层梯度可能导致钻孔在不同的沿岸位置以不同的方式演变。观察到三种潜在的钻孔命运:1) 钻孔完整地过渡到 9 米等深线,2) 钻孔被更快的后续钻孔超越,导致钻孔合并事件,以及 3) 当上游跃层接近或低于中间深度时,钻孔消失。每个系泊处每小时的分层图和连续钻孔的估计位置表明,单个内部钻孔可显著影响后续钻孔的波导。
2018 年,英国大陆架油气设施耗电量约为 21TWh(约占英国发电量的 6%,相当于威尔士面积地区的家庭用电量)注 1。使用天然气或柴油发电导致的排放量约为 10MtCO 2 e(约占英国能源部门的 10%)。由于电力占所有海上油气排放量的约 70%,因此用岸上或海上可再生能源取代火力发电对于实现该行业温室气体排放的有效削减至关重要。此外,海上电力需求和(未来)海上风电场的距离可能会对风电增长产生重大影响。
取消 本指导文件取消并取代 2012 年 9 月 12 日发布的同名文件,在取消前一直有效。本文件为潜在承租人和受赠人提供了有关符合 30 CFR 585.106 和 585.107 规定的外大陆架 (OCS) 可再生能源租赁和补助金以及替代用途补助金的监管要求的指南。本文件还提供了有关您应根据 30 CFR 585.107 向海洋能源管理局 (BOEM) 提交哪些类型的信息的指南,以便 BOEM 评估您是否符合这些要求。本文件将定期更新 - 您可以联系下面“地址和联系方式”下相应的 BOEM 办公室,以确保您查阅的是本文件的最新版本。
