性能结果基于配置中所示日期的测试,可能无法反映所有公开可用的更新。请参阅备份以了解配置详情。基于系统和组件的结果以及使用英特尔参考平台(内部示例新系统)、内部英特尔分析或架构模拟或建模估计或模拟的结果仅供参考。结果可能会因任何系统、组件、规格或配置的未来变化而有所不同。
摘要: - 本文探讨了排名遗传优化增强学习(RGORL)算法的应用,以优化玩家在网球比赛中的战术决策和圆形计划。利用进化原理和强化学习技术,RGORL提供了一个数据驱动的框架,以增强球场性能。广泛的模拟证明了该算法在改善比赛成果,得分赢得百分比和游戏赢得百分比方面的有效性。结果说明了连续几代人的健身得分的稳步改善,表明RGORL随着时间的推移发展和完善策略的能力。对战术决策的分析揭示了诸如获胜率,得分赢得百分比和游戏赢得百分比的策略的优势。通过广泛的模拟,RGORL证明了匹配结果的显着改善,获胜率最大提高了13%。对战术决策的分析揭示了赢得百分比的积分的显着增强,在各种策略中,高达34%的人(尤其是“净方法”)提高了34%。此外,该算法在游戏中取得了可观的收益,赢得了百分比,记录的算法最高可增长25%。
[1] 陈善广 , 陈金盾 , 姜国华 , 等 .我国载人航天成就与空间 站建设 .航天医学与医学工程 , 2012, 25: 391-6 [2] 唐琳 .中国空间站完成在轨建造并取得一系列重大进 展 .科学新闻 , 2023, 25: 11 [3] 肖毅 , 陈晓萍 , 许潇丹 , 等 .空间脑科学研究的回顾与展 望 .中国科学 : 生命科学 , 2024, 54: 325-37 [4] 王跃 , 陈善广 , 吴斌 , 等 .长期空间飞行任务中航天员出 现的心理问题 .心理技术与应用 , 2013, 1: 40-5 [5] 陈善广 , 王春慧 , 陈晓萍 , 等 .长期空间飞行中人的作业 能力变化特性研究 .航天医学与医学工程 , 2015, 28: 1-10 [6] 凌树宽 , 李玉恒 , 钟国徽 , 等 .机体对重力的感应及机制 .生命科学 , 2015, 27: 316-21 [7] 范媛媛 , 厉建伟 , 邢文娟 , 等 .航天脑科学研究进展 .生 命科学 , 2022, 34: 719-31 [8] 梁小弟 , 刘志臻 , 陈现云 , 等 .生命中不能承受之轻 —— 微重力条件下生物昼夜节律的变化研究 .生命科学 , 2015, 27: 1433-40 [9] 邓子宣 , Papukashvili D, Rcheulishvili N, 等 .失重 / 模拟 失重对中枢神经系统影响的研究进展 .航天医学与医 学工程 , 2019, 32: 89-94 [10] Tays GD, Hupfeld KE, McGregor HR, et al.The effects of long duration spaceflight on sensorimotor control and cognition.Front Neural Circuits, 2021, 15: 723504-18 [11] Mhatre SD, Iyer J, Puukila S, et al.Neuro-consequences of the spaceflight environment.Neurosci Biobehav Rev, 2022, 132: 908-35 [12] 陈善广 , 邓一兵 , 李莹辉 .航天医学工程学主要研究进 展与未来展望 .航天医学与医学工程 , 2018, 31: 79-89 [13] Moyer EL, Dumars PM, Sun GS, et al.Evaluation of rodent spaceflight in the NASA animal enclosure module for an extended operational period (up to 35 days).NPJ Microgravity, 2016, 2: 16002-9 [14] Mains R, Reynolds S, Associates M, et al.A researcher's guide to: rodent research [M].Rat maintenance in the research animal holding facility during the flight of space lab 3.Washington D.C.: National Aeronautics and Space Administration, 2015 [15] Fast T, Grindeland R, Kraft L, et al.Physiologist, 1985, 28: S187-8 [16] Ronca AE, Moyer EL, Talyansky Y, et al.Behavior of mice aboard the international space station.Sci Rep, 2019, 9: 4717 [17] Morey-Holton ER, Hill EL, Souza KA.Animals and spaceflight: from survival to understanding.J Musculoskelet Neuronal Interact, 2007, 7: 17-25 [18] 陈天 , 胡秦 , 石哲 , 等 .美国太空动物实验研究发展历程 .中国实验动物学报 , 2022, 30: 582-8 [19] 董李晋川 , 黄红 , 刘斌 , 等 .苏俄太空动物实验研究发展 历程 .中国实验动物学报 , 2022, 30: 557-67 [20] Beheshti A, Shirazi-Fard Y, Choi S, et al.Exploring the effects of spaceflight on mouse physiology using the open access NASA GeneLab platform.J Vis Exp, 2019, 143: e58447- 58 [21] 姜宁 , 刘斌 , 张亦文 , 等 .欧日太空动物实验研究概况 .中国实验动物学报 , 2022, 30: 568-73 [22] Mao XW, Byrum S, Nishiyama NC, et al.Impact of
事实上,重要性评估是在风险管理职能部门的支持下通过分析 ERM 模型方法进行的,并与为 TCFD 报告进行的气候评估所采用的方法相协同,持续监测风险和机遇。根据 2022 年举行的 COP 27 上设定的目标,普睿司曼重申了其在能源转型中的重要作用。根据 IPCC 在其 2022 年 4 月的报告中所述,将全球变暖限制在 1.5°C 左右需要温室气体 (GHG) 排放量最迟在 2025 年之前达到峰值,到 2030 年减少 43%,到 2050 年实现净零排放。在此背景下,本报告强调了普睿司曼的活动对于向低碳经济转型的重要性。普睿司曼集团在这一转型中发挥的作用也得到了为协调普睿司曼的经济活动和遵守欧盟分类法规(欧盟法规 2020/852)而进行的分析结果的证实,该分析在 2022 年年度报告和 2022 年可持续发展报告中进行了报告。
真正的概念之旅从第二章(第 25 页)开始,从我们可持续发展体系的核心开始:我们的 ESG 身份(第一环)。在这里,我们解释了关键的环境、社会和治理因素如何逐步融入我们的企业 DNA。第三章(第 53 页)描述了这一身份如何围绕自身形成一个创新的决策和运营模式:我们的 ESG 治理(第二环)。我们指的是将可持续发展战略与运营联系起来、使公司与利益相关者保持一致的机制。接下来的三章介绍了普睿司曼用于促进可持续发展的三个驱动力:我们的 ESG 抱负(三角形)。特别是,第四章“人、文化和组织”(第 87 页)重点关注我们的社会抱负,以确认普睿司曼文化和组织以人为本的特性。第五章“可持续创新和精益制造”(第 153 页)从技术方面描述了我们的创新抱负,这些技术使我们成为衡量可持续产品的基准。第六章“扩展价值链”(第 153 页)带领我们审视普睿司曼在价值链上游和下游的可持续领导力:我们的 ESG 价值(外环)。这凸显了普睿司曼作为冠军的角色,能够为客户和利益相关者维持和促进可持续价值的创造。
In collaboration with He, Rong-Qiang (贺荣强) a gifted expert Zheng, Ru (郑茹) , Wang, Jia-Ming (王佳明), Chen, Yin (陈寅) , Tian, Yi-Heng ( 田一衡) at Renmin University of China; Huang, Li ( 黄理) a gifted expert at Science and Technology on Surface Physics and Chemistry Laboratory
处理器 1 英特尔 ® 赛扬 G4930(2 核/2 MB/2T/3.2 GHz/65W);支持 Windows 10/Linux 英特尔 ® 奔腾 G5420(2 核/4 MB/4T/3.8 GHz/65W);支持 Windows 10/Linux 英特尔 ® 奔腾 G5600(2 核/4 MB/4T/3.9 GHz/65W);支持 Windows 10/Linux 英特尔 ® 酷睿™ i3-9100(4 核/6 MB/4T/3.6 GHz 至 4.2 GHz/65W);支持 Windows 10/Linux 英特尔 ® 酷睿™ i3-9300(4 核/8 MB/4T/3.7 GHz 至 4.3 GHz/65W);支持 Windows 10/Linux 英特尔 ® 酷睿™ i5-9400(6 核/9 MB/6T/2.9 GHz 至 4.1 GHz/65W);支持 Windows 10/Linux Intel ® Core™ i5-9500(6 核/9MB/6T/3.0GHz 至 4.4GHz/65W);支持 Windows 10/Linux Intel ® Core™ i7-9700(8 核/12MB/8T/3.0GHz 至 4.7GHz/65W);支持 Windows 10/Linux Intel ® Celeron G4930T(2 核/2MB/2T/3.0GHz/35W);支持 Windows 10/Linux(仅限 Micro)Intel ® Pentium G5420T(2 核/4MB/4T/3.2GHz/35W);支持 Windows 10/Linux(仅限 Micro)Intel ® Pentium G5600T(2 核/4MB/4T/3.3GHz/35W);英特尔 ® 酷睿™ i3-9100T(4 核/6MB/4T/3.1GHz 至 3.7GHz/35W);支持 Windows 10/Linux(仅 Micro)英特尔 ® 酷睿™ i3-9300T(4 核/8MB/4T/3.2GHz 至 3.8GHz/35W);支持 Windows 10/Linux(仅 Micro)英特尔 ® 酷睿™ i5-9400T(6 核/9MB/6T/1.8GHz 至 3.4GHz/35W);支持 Windows 10/Linux(仅 Micro)英特尔 ® 酷睿™ i5-9500T(6 核/9MB/6T/2.2GHz 至 3.7GHz/35W);支持 Windows 10/Linux(仅 Micro)英特尔 ® 酷睿™ i7-9700T(8 核/12 MB/8T/2.0 GHz 至 4.3 GHz/35W);支持 Windows 10/Linux(仅 Micro)英特尔赛扬™ G4900(2 核/2 MB/2T/最高 3.1 GHz/65W);支持 Windows 10/Linux 英特尔奔腾™ Gold G5400(2 核/4 MB/4T/3.7 GHz/65W);支持 Windows 10/Linux 英特尔奔腾™ Gold G5500(2 核/4 MB/4T/3.8 GHz/65W);支持 Windows 10/Linux 英特尔 ® 酷睿™ i3-8100(4 核/6 MB/4T/3.6 GHz/65W);支持 Windows 10/Linux Intel ® Core™ i3-8300(4 核/8MB/4T/3.7GHz/65W);支持 Windows 10/Linux Intel ® Core™ i5-8400(6 核/9MB/6T/最高 4.0GHz/65W);支持 Windows 10/Linux Intel ® Core™ i5-8500(6 核/9MB/6T/最高 4.1GHz/65W);支持 Windows 10/Linux Intel ® Core™ i7-8700(6 核/12 MB/12T/最高 4.6 GHz/65 W);支持 Windows 10/Linux Intel Celeron™ G4900T(2 核/2MB/2T/2.9GHz/35W);支持 Windows 10/Linux Intel Pentium™ Gold G5400T(2 核/4MB/4T/3.1GHz/35W);支持 Windows 10/Linux 英特尔奔腾™ Gold G5500T(2 核/4 MB/4T/3.2GHz/35W);支持 Windows 10/Linux 英特尔 ® 酷睿™ i3-8100T(4 核/6 MB/4T/3.1GHz/35W);支持 Windows 10/Linux 英特尔 ® 酷睿™ i3-8300T(4 核/8 MB/4T/3.2GHz/35W);支持 Windows 10/Linux 英特尔 ® 酷睿™ i5-8400T(6 核/9 MB/6T/最高 3.3GHz/35W);支持 Windows 10/Linux 英特尔 ® 酷睿™ i5-8500T(6 核/9 MB/6T/最高 3.5GHz/35W);支持 Windows 10/Linux Intel ® Core™ i7-8700T(6 核/12 MB/12T/高达 4.0 GHz/35 W);支持 Windows 10/Linux
2009 年至 2018 年,小型卫星市场经历了 23% 的复合年增长率 (CAGR)。预计 2019 年至 2024 年间将实现更大的扩张。