2024 年 2 月 2 日——基因编辑可用于增加 MAA 的产量。= 允许对生物体 DNA 进行精确修改的分子技术。戊糖磷酸...
•GAI隔离了硅藻(nitzschia sp。)这是他们在考艾岛增长设施的优越的户外菌株之一。生物量和脂质产量的进一步改善将使生物燃料应用受益。•由于在高生产率期间O 2水平,由于碳酸氢盐被吸收并在一天高温期间,pH值增加,因此pH值增加,pH值增加,pH值增加。•PNNL和矿山都在建立光生反应器方面都建立了专业知识,可以根据光强度和温度模仿太阳日,包括定制的浊度技术。•可以用氧化还原/pH/温度压力增加的细胞培养,以在“驯化条件”下选择更多稳健的菌株。•从已经有希望的压力开始,目标是进一步提高产量约20%。•其他应变(例如蓝细菌,藻类也有选择性的压力来减轻风险。•建立有机联盟。2
生产” 位于法国南部(普罗旺斯)卡达拉什中心的 BIAM 研究所的“生物能源和微藻”(EBM)团队有一个永久科学家职位开放 科学家将启动对微藻进行基因操作(基因工程、合成生物学或基因组编辑)的项目,以引入新途径或改进现有的途径来生产感兴趣的分子。研究将对模型微藻莱茵衣藻或科学家可能提议在团队内开发的其他藻类或蓝藻物种进行。科学问题可以很大,包括从改善生长和二氧化碳吸收,到增强脂质储存,或重新定向碳通量以促进感兴趣分子的生产,但它应该符合主办团队的主要使命(见下面的描述)。主办团队的使命和活动 您将受益于主办团队的专业知识(https://www.cite-des-energies.fr/biam/recherche/ebm/)以及 BIAM 研究所、CEA 和艾克斯-马赛大学的环境(https://www.cite-des-energies.fr/biam/plateformes-technologiques/)。您将在“生物能源和微藻”团队中工作,该团队由 4 名科学家、4 名工程师、3 名技术人员以及通常 3-5 名博士生和博士后组成。EBM 团队的主要目标是探索微藻在生物技术应用方面的潜力,特别是在生物能源领域。具体来说,我们研究 CO 2 的光还原过程,以形成和储存富含能量的分子(例如脂质和烷烃)。该研究基于在莱茵衣藻等模型生物上开发的遗传、生物化学、脂质组学和生物物理方法,以确定光合作用和脂质代谢的关键基因,并探索生物多样性以寻找感兴趣的酶、代谢途径或光合微生物。
摘要:农产品副产品和微藻是具有神经保护特性的低成本、高价值的生物活性化合物来源。然而,治疗分子的神经保护效果可能受到其穿过血脑屏障 (BBB) 到达大脑的能力的限制。在本研究中,对已证明具有体外神经保护潜力的刺槐 (ASFE)、Cyphomandra betacea (T33)、小粒咖啡 (PPC1)、油橄榄 (OL-SS)、柑橘 (PLE100) 副产品和微藻 Dunaliella salina (DS) 的各种绿色提取物进行了基于永生化人脑微血管内皮细胞 (HBMEC) 模型的体外 BBB 通透性和运输测定。进行了毒性和 BBB 完整性测试,并在孵育 2 和 4 小时后使用气相色谱和液相色谱结合四极杆飞行时间质谱 (GC/LC-Q-TOF-MS) 评估了目标生物活性分子穿过 BBB 的运输情况。HBMEC-BBB 运输试验显示,代表性神经保护化合物(如单萜和倍半萜、植物甾醇和一些酚类化合物)具有高渗透性。从拟议的体外 BBB 细胞模型中获得的结果进一步证明了目标天然提取物的神经保护潜力,这些提取物是功能性成分的有希望的来源,可以转化为具有科学支持的神经保护声明的食品补充剂、食品添加剂或营养保健品。
为人类肌肉茎(Hmustem)细胞获得的临床前数据表明其在肌肉损伤的背景下的巨大修复能力。但是,它们的临床潜力受到移植后中等生存能力的限制。要克服这些局限性,它们在保护环境中的封装将是有益的。在这项研究中,研究了使用外部或内部凝胶化获得的可调节钙 - 阿尔金酸盐水凝胶作为Hmustem细胞封装的新策略。使用原子力显微镜通过压缩实验来表征这些水凝胶的机械性能。测量的弹性模量强烈取决于胶凝模式和钙/藻酸盐浓度。分别在内部和外部凝胶化后制备的水凝胶获得了从1到12.5 kPa和3.9至25 kPa的值。此外,水凝胶的机械性能差异是由其内部组织产生的,具有内部凝胶的各向同性结构,而外部模式导致各向异性。进一步表明,释放后,保留了藻类水凝胶中掺入的Hmustem细胞的生存力,形态和肌原分化char术。这些结果表明,封装在钙钙酸钙水凝胶中的Hmustem细胞保持其功能,从而可以开发肌肉再生方案以提高其治疗功效。
普遍地使用塑料,导致了水生系统中微型和纳米塑料(MNP)的广泛存在,对食物网和生态系统健康构成了重大威胁。这个主题演讲将探索MNP和微藻之间的复杂相互作用,这些相互作用是水生环境中至关重要的主要生产者。必须研究塑料颗粒如何影响微藻,包括其生长,光合活性和形态。演示将涵盖塑料的环境降解,微塑料和纳米塑料之间的差异以及对微藻的潜在毒性作用。此外,演讲将讨论微藻如何在藻类培养物中使用可能利用的MNP,并提出安全的方法,用于在生物燃料生产中使用MNP污染的藻类生物量。本演讲旨在提供MNP影响的全面概述,并强调使用Mi Croalgae的塑料去除和生物能源生成的创新方法。
摘要。藻类细菌群落以生产破坏藻酸盐的抗生素酶而闻名,这些酶是生物膜的主要成分的藻酸盐。生物膜相关感染是危险的,因为它们对抗生素和人类免疫系统产生了抗性。这项工作报告了基于分子系统学和系统发育分析16S rRNA的几种海洋藻素细菌,可能是新的物种。它们是从不同的棕色藻类氢层sp中分离出来的。居住在印度尼西亚Wakatobi的Hoga岛周围的海洋中。这项研究旨在揭示这些细菌分离株的分子身份和亲属关系,以理解其更多的特性,即氢氯拉斯sp的共生体。分子鉴定和系统发育树的结构是根据使用27F-1492R引物的聚合酶链反应对16S rRNA基因扩增的序列进行的。可以获得总共31种棕色藻类氢氯拉鲁斯共生细菌的分离株,表明藻类是海洋细菌的有吸引力的共生菌宿主。能够产生藻酸盐裂解酶和琼脂酶的分离株数量为15。然而,在用最小藻酸盐培养基进行确认测试后,只有15个分离株中只有12个是藻酸盐裂解酶生产者。在具有最高藻体级指数的8个分离物上的分子鉴定显示了与3种不同属的最接近的关系:颤音,拟南芥和aestuariibacter。基于BLAST(基本局部对齐搜索工具)分析,5比其对齐结果的最高命中率低于97%的相似性水平,表明它们可能是新物种。这些发现表明了海洋棕色藻类氢层sp的潜力。是藻素溶液的潜在宿主。关键词:琼脂酶,藻酸盐裂解酶,海洋细菌,瓦卡托比。简介。抗生素酶是可用于控制和去除细菌生物膜的酶的类型。这些酶溶解了包含细菌细胞外基质的多糖,蛋白质和核酸。抗生素酶包括脂肪酶,可防止纤维旁溶血生物膜和纤维素酶的生长,这些脂肪酶会分解大多数生物膜中存在的纤维素(Gutiérrez2019)。也已经证明了脂肪酶,纤维酶和蛋白酶K等组合酶在预防和消除副溶血性生物膜上有效(Li et al 2022)。其他生物膜控制酶包括β-葡萄糖酶,蛋白酶和淀粉酶,它们可以分解EPS基质并防止生物膜的产生。抗生素酶被认为比传统方法更有效,更环保,例如侵袭性化学物质,例如氢氧化钠或次氯酸钠,它们可以腐蚀机械和材料(Blackman 2021)。
藻酸盐裂解酶和寡聚酸酯裂解酶催化藻酸盐的糖苷键的裂解,藻酸盐,这是由棕色藻类和其他生物体合成的酸性多糖。这些酶高度多样,目前已分为15个碳水化合物活性酶(Cazy)数据库的家族。我们探讨了结构和分类学的多样性,基因和转录本的生物地理分布以及来自全球海洋上层皮科浮游物社区的假定藻酸盐降解酶的潜在环境驱动因素。首先使用序列相似性网络对确定的序列进行分析,以评估其与Cazy成员的关系。与PL5,PL6,PL7,PL17和PL38家族有关的序列具有较高的基因和转录物丰度,温度是携带假定藻酸盐裂解酶基因的社区成员结构的关键驱动力。PL5同源物包括活性位点的关键残基中的变体,分配给“ candidatus pelagibacter”的序列显示出高基因和转录物丰度,与无机磷浓度负相关。序列分配给了黄杆菌和/或γ-细菌类别主导了PL6,PL7和PL17家族,尤其是与未经文化的偏光杆菌和Alteromonas Australica密切相关的序列。在PL38家族中,虽然从planctomycetota,verrucomicrobiota和Bacteroidota的序列分配给分类群,在大多数区域和深度上显示出最高的相对基因丰度,而高表达水平在高纬度的序列中观察到序列中的序列,分配给了euukaryota(例如eukaryota(e.g.,e.g.,phaeocystica)。总体而言,这项研究中发现的推定酶可能参与了各种生理过程,包括藻酸盐同化和生物合成。
奥林匹克运动员,非政府组织与营养不良,素食饮食和NASA有什么共同点?对螺旋藻的热情!错误地称为“微藻”,螺旋藻实际上属于蓝细菌,是地球上最古老的蓝细菌之一。强烈的蓝绿色颜色,螺旋藻自然地在受热带的湖泊中生长。在1974年,世界卫生组织宣布螺旋藻为“未来的食物”,而联合国教科文组织则称其为“明天的理想和最完整的食物”。在过去的30年中,Greentech已成为欧洲领先的微藻生产国,以及其子公司绿色的绿色脂肪酸,对健康必不可少的多不饱和脂肪酸,从而增强了这些作物的发展目前,omega-3脂肪酸主要来自冷水脂肪鱼,如今受到过度捕捞的威胁。我们已经知道某些微藻可以合成螺旋藻。因此,我们要做的就是开发一种将其耕种的技术,以便能够将其用作omega-3s的可再生能源。微藻的好处不仅在食品上停止……绿色还将它们转化为一些目标市场的创新成分,例如动物和人类营养,化妆品,环境,农艺学和健康。
自文明诞生以来,我们依靠农业来维持生计、提供医疗保健和获取资源。然而,在气候驱动的农业挑战中,传统的农业实践已不足以满足不断增长的人口的需求。微藻成为希望的灯塔,提供可持续和可再生的食物、动物饲料和能源来源。它们生长迅速、对非耕地和非饮用水的适应性强,生物产品种类多样(包括生物燃料和营养保健品),使它们成为未来资源管理的基石。此外,微藻捕获碳的能力符合环境保护目标。虽然微藻提供了显著的好处,但成本效益高的生物质生产障碍仍然存在,这限制了其更广泛的应用。本综述将微藻与其他宿主平台进行了比较,强调了当前旨在克服现有障碍的创新方法。这些方法包括一系列技术,从基因编辑、合成启动子和诱变到通过转录因子进行选择性育种和代谢工程。