考虑由成对测量组成的数据,例如对象对之间是否存在链接。例如,这些数据出现在蛋白质相互作用和基因调控网络、作者-收件人电子邮件集合和社交网络的分析中。使用概率模型分析成对测量需要特殊的假设,因为通常的独立性或可交换性假设不再成立。在这里,我们引入了一类用于成对测量的方差分配模型:混合成员随机块模型。这些模型结合了实例化密集连接块(块模型)的全局参数和实例化连接中节点特定变异性的局部参数(混合成员)。我们开发了一种用于快速近似后验推理的通用变分推理算法。我们展示了混合成员随机块模型的优势,并将其应用于社交网络和蛋白质相互作用网络。关键词:分层贝叶斯、潜在变量、均值场近似、统计网络分析、社交网络、蛋白质相互作用网络
11 瑞士伯尔尼大学医院 Inselspital 心脏病学、预防心脏病学和运动医学大学诊所 12 瑞士苏黎世大学儿童医院心脏病学系 13 奥地利维也纳医科大学维也纳综合医院生物医学成像和图像引导治疗系 14 瑞士洛桑大学 (UniL) 生物与医学学院 15 瑞士日内瓦日内瓦大学医院 (HUG) 心脏病学分部 16 参与中心和研究人员的完整列表见附录。 * 这些作者对研究设计、数据解释和手稿准备做出了同等贡献。 通讯地址 Matthias Greutmann,医学博士,先天性心脏病负责人,苏黎世大学医院心脏中心,Raemistrasse 100,8091 苏黎世,瑞士。电子邮件:Matthias.greutmann@usz.ch;电话:++41 44 255 3883 字数:3510字
摘要。对单个量子系统(例如单个光子、原子或离子)的精确控制为一系列量子技术打开了大门。这一概念的目标是创建能够利用量子效应解决数据处理和安全信息传输问题以及比现有方法更有效地对周围世界参数进行高精度测量的设备。量子技术出现的关键一步是二十世纪下半叶的开创性工作,它首先展示了量子力学对自然的描述的矛盾性和正确性,其次,奠定并引入了成为现代量子技术基础的基本实验方法。2022 年诺贝尔物理学奖授予了 Alain Aspect、John Clauser 和 Anton Zeilinger,以表彰他们对纠缠光子的实验、建立贝尔不等式的违反以及开创量子信息科学。
方法:为了推断 AS 与各种糖尿病相关特征(包括 1 型糖尿病 (T1DM)、T2DM、血糖水平、空腹血糖、糖化血红蛋白和空腹胰岛素)之间的因果关系,我们采用了孟德尔随机化 (MR) 分析。我们从 IEU OpenGWAS 数据库、GWAS 目录和 FinnGen 数据库中获取了暴露和结果变量的 GWAS 汇总数据。为了综合 MR 分析的结果,我们应用了使用固定或随机效应模型的荟萃分析技术。为了识别和排除与结果表现出水平多效性的工具变异 (IV),我们使用了 MR-PRESSO 方法。使用 MR-Egger 方法以及 Q 和 I^2 检验进行敏感性分析,以确保我们的研究结果的稳健性。
近年来,随着硬件和软件技术的进步,高性能计算取得了长足的发展。计算机的性能按照摩尔定律不断提高,但似乎在不久的将来就会达到极限。量子计算机有可能大大超越经典计算机的性能,因此成为研究的焦点。本研究从理论角度和模拟实现两个方面探讨了经典随机游动与量子游动的区别,并探讨了量子游动在未来的适用性。概述了经典随机游动和量子游动的基本理论,并根据经典随机游动和量子游动的行为和概率分布,比较了它们之间的特征差异。同时,我们使用Qiskit作为量子模拟器实现了量子行走。表示量子行走的量子电路主要由硬币算子、移位算子和量子测量三部分组成。硬币算子表示量子行走中的抛硬币,这里我们使用了Hadamard算子。移位算子表示根据硬币算子的结果进行量子行走的移动。量子测量是提取量子比特的量子态的过程。在一维量子行走中,我们准备了四种情况,作为从两个到五个量子比特位置的量子比特数的差异。在所有情况下,都已看到量子行走的成功实现,这与量子比特的数量和初始状态的差异有关。然后,我们广泛研究了二维量子行走的实现。在二维量子行走中,就每个 x 和 y 坐标位置的量子比特数量而言,准备了三种情况,从两个到四个量子比特。虽然与一维情况相比,问题设置的复杂性大大增加,但可以看出量子行走实现的成功。我们还看到,量子行走的行为和概率分布的扩展在很大程度上取决于初始硬币状态和初始位置的初始条件。本研究证明了量子行走作为解决未来广泛应用中复杂问题的工具的适用性。最后,我们给出了本研究的可能观点和未来展望。
心力衰竭(HF)是一种心血管疾病(CVD),是一种普遍的疾病,可能导致危险情况。每年,全球大约有1790万患者死于这种疾病。对于心脏专家和外科医生来说,准确预测心力衰竭是具有挑战性的。幸运的是,可以使用分类和预测模型,可以使用医疗数据有效地帮助医疗领域。这项研究的目的是通过预测由11个患者属性的五组数据组成的Kaggle数据集来提高心力衰竭预测的准确性。使用多种机器学习方法来了解数据和医学数据库中心力衰竭的可能性。结果和比较表明,预测心力衰竭的精度得分明显提高。将此模型整合到医疗系统中将有助于帮助医生预测患者心脏病的预测
3D对应关系,即一对3D点,是计算机视觉中的一个有趣概念。配备兼容性边缘时,一组3D相互作用形成对应图。此图是几个最新的3D点云注册方法中的关键集合,例如,基于最大集团(MAC)的一个。但是,其特性尚未得到很好的理解。因此,我们提出了第一项研究,该研究将图形信号处理引入了对应图图的域。我们在对应图上利用了广义度信号,并追求保留此信号的高频组件的采样策略。为了解决确定性抽样中耗时的奇异价值分解,我们采取了随机近似采样策略。因此,我们方法的核心是对应图的随机光谱采样。作为应用程序,我们构建了一种称为FastMAC的完整的3D注册算法,该算法达到了实时速度,而导致性能几乎没有下降。通过广泛的实验,我们验证了FastMac是否适用于室内和室外基准。例如,FastMac可以在保持高recistra-
1。作弊:有意使用或试图在考试中使用未经授权的笔记,书籍,电子媒体或电子通信;在考试中与同学交谈或看别人的工作;事先提交工作进行课堂考试;让某人为您参加考试或为别人参加考试;违反了管理考试管理的其他规则。2。制造:包括但不限于伪造实验数据和/或引用。3。窃:在任何学术练习中,有意或故意代表他人自己的言语或思想;不归因于直接报价,释义或借来的事实或信息。4。未经授权的合作:共同从事本来可以单独完成的工作。
摘要 目的:利用随机尿液 ACR 比值确定 2 型糖尿病患者的糖尿病肾病发病率并确定其相关危险因素。 研究设计:描述性横断面研究。 研究地点和持续时间:本研究于 2023 年 2 月 1 日至 2023 年 7 月 31 日在巴基斯坦白沙瓦穆罕默德教学医院 (MTH) 医学部进行。 方法:共调查了 150 名 2 型糖尿病患者。样本量是使用 WHO 样本量计算器计算的,使用一项参考研究,2 型糖尿病患者糖尿病肾病的患病率为 10.8%;置信区间 = 95%,误差幅度为 5%。 结果:标准差 ± 5.146,平均年龄为 49 岁。有 87 名(58%)女性和 63 名(42%)男性。对 150 名受试者的随机尿液 ACR 进行了分析。其中,47 名(31%)患有微量白蛋白尿(少于 300 mg/m),28 名患者(19%)患有大量白蛋白尿(超过 300 mg/m),而 6 名(4%)患有终末期肾病,GFR < 30 ml/m -1.73 m2。对 150 名受试者进行了一项研究以确定糖尿病肾病的状况。其中,81 名(54%)患有糖尿病肾病,69 名(46%)没有。结论:使用随机尿液 ACR 比率,我们的研究表明 46% 的 2 型糖尿病患者患有糖尿病肾病。糖尿病病程 5-10 年的患者的发病率为 24%,糖尿病病程 11-15 年的患者发病率为 26%。糖尿病病程16至20年的患者发病率为50%。总之,糖尿病病程越长,患糖尿病肾病的风险就越大。
