对比,ML Tictactoe播放器学会了不要从游戏数据库或反复玩游戏中丢失游戏。在更复杂的问题中,对基于规则的AI进行编程,该规则可以预期系统中所有可能的状态很快变得不可行。mL方法通常分为三类:监督学习,不受欢迎的学习和强化学习。在监督学习中,ML算法从数据中学习输入和输出对之间的关联。输出是监督信号,模型学会从输入中推断出来。例如,一个计算机从包含借款人(输入)特征的数据集中学习(输入)(输出)。然后使用该模型来预测未来的借款人是否可能默认。在无监督的学习中,ML模型在输入数据中发现模式。没有输出(监督信号)。例如,一个无监督的ML模型群集借款人会根据其相似性或识别相对于整个数据集的异常数据点。在增强学习中,计算机代理试图在导致最大奖励的环境中识别动作顺序。代理需要探索环境以学习最佳策略。例如,强化学习者通过多次对抗来掌握棋盘游戏来掌握棋盘游戏。该系统的设计使得代理在赢得游戏时会获得奖励,并且在输掉比赛时会受到惩罚。,2018年),监督模型,从图像中检测皮肤癌(Esteva等人,2018年)。代理人仅编程以寻求奖励,但是在开始学习之前,没有任何策略配备任何策略。近年来,AI的许多里程碑成功,例如强化学习代理人玩耍(Silver等人,2017年),或者可以编写连贯文本的无监督语言模型(Brown等人,2020)基于深度人工神经网络,也称为深度学习。通过将输入数据从网络中的图层传递到图层,以越来越抽象的方式表示。提供了足够的数据点,可以从其中学习有意义的表示,深度学习模型可以从非结构化高维数据(例如图像,文本和声音)中提取信号。这是一项更传统的ML方法的任务。在许多AI应用中,人类和机器共同运行既稳定又有效的系统。财务系统也不例外。对于财务系统,稳定性是指吸收冲击的能力,同时防止对真实经济的破坏(Schinasi,2004年)。许多出色的论文已全面审查了AI在财务部门的应用,几项研究集中在其财务稳定性的暗示上(金融稳定委员会,2017年; Danielsson等人。,2019年; Gensler和Bailey,2020年)。我们的论文重点关注这些应用程序(从交易和贷款到监管和政策制定)最好地说明了人类和机器的一些优势和劣势。,2006年; Bacoyannis等。,2015年)。例如,在算法交易中使用AI具有明显的执行速度和同时考虑大量信息的能力(Nevmy-Vaka等人。此外,算法交易者不太可能犯错或有偏见的非理性决定(Jain等人,但大多数AI代理都是
一个人可以设计并自动化一个计算和实验平台,以便每个平台迭代指导并驱动另一个平台以实现预定的目标?Rapp及其同事(2024)在论文中仅描述了这种可能性,该论文详细介绍了一个自动驱动实验室的原型,该实验室可以自动导航,以产生具有所需属性的工程酶。这个实验室,而不是自动化协议,用缩写词来提及。这是指用于蛋白质景观探索的自动驾驶自动驾驶机器。本文描述了一个原型,涉及糖苷水解酶的工程,以增强热稳定性。“大脑”是该自动化系统背后的计算组件,旨在从策划的数据集学习蛋白质序列 - 功能关系。然后,通过一个全自动的机器人系统评估了这些设计蛋白,该蛋白可以合成并实验表征设计的蛋白质,并向代理(即计算成分)提供反馈,以填补其对系统的理解。因此,设计样品剂是通过在搜索过程中积极获取信息来不断地重新理解对蛋白质景观的理解。由于该智能代理从一个精心策划的,多样化的数据集中学习蛋白质序列 - 功能关系,因此根据更新的假设,这种反馈对于重新景观探索和新蛋白质的设计至关重要。在此原型中,将四个样品剂的任务承担了此目标。单个药物的搜索行为差异主要是由实验测量噪声引起的。这些药物的目标是导航糖苷水解酶景观,并以增强的热耐受性鉴定酶。然而,尽管他们的搜索行为有所不同,但所有四个代理都可以在热稳定糖苷水解酶上融合 - 这是显着的壮举,因为它显然不需要任何人类干预。为了启动迭代设计过程,Rapp及其同事用糖苷水解酶序列喂养样品,具有工程热耐受性的靶标。使用在可抑制和热固醇糖苷水解酶进行的实验中的非常最小的信息,以蛋白质耐受景观呈现样品(Romero and Arnold 2009)。蛋白质富度景观描述了从序列到类似于峰,山谷和山脊的陆地景观的映射,该目标是达到拟合度更高的自适应峰。至关重要的输入来自一个反馈周期,其中代理查询环境以收集信息,从而改善了内部对景观的看法。从这个意义上讲,蛋白质工程代理的任务是贝叶斯优化的任务,其中未知的目标函数与探索和开发之间的有效平衡(作者称为权衡)相息。样品以部署高斯工艺(GP)模型,以探索景观并提取可以描述序列水平上的可热稳定蛋白与中序蛋白有何不同的信息(Romero等2013)。使用贝叶斯优化(BO)技术,此信息启用了迭代设计蛋白质序列的样品。作者还设计了几种BO方法,以说明缺乏丰富的实验数据。这方面通常至关重要,因为人工工程/机器学习(AI/ML)工具需要一个大型,多样化的数据集有效。首先使用基于GP模型的分类器来识别功能序列,然后采用了上层信心结合算法来选择实验验证的顶级序列(Dauparas等人。2022)。使用预先合成的基因片段组装了新型工程酶,即设计的序列。该策略本身在合成生物学的高通量平台中很普遍。
通过可解释的AI(XAI)技术增强神经网络中的可解释性。电子。电子。eng。,卷。1,否。1,pp。1-5,2024。版权:从医疗保健诊断到财务建模的各种应用程序中神经网络的快速发展,已大大提高了决策过程的准确性和效率。但是,这些模型通常可以用作黑匣子,几乎没有深入了解它们如何到达特定的预测。这种缺乏解释性为其在信任,问责制和透明度至关重要的关键领域中采用的主要障碍。本研究旨在通过开发一个集成了多种可解释的AI(XAI)技术来增强神经网络的可解释性的新型框架来解决这一问题。所提出的框架结合了特征分析,层相关性传播(LRP)和视觉解释方法,例如梯度加权类激活映射(Grad-CAM)。这些技术共同对神经网络的决策过程提供了全面的看法,使它们对利益相关者更加透明和可以理解。简介和背景1.1。1.2。2。方法论2.1。数据收集我们的实验结果表明,综合的XAI框架不仅可以提高可解释性,而且还保持了高度的准确性,从而弥合了性能和透明度之间的差距。这项研究为在关键应用程序中部署可解释的神经网络提供了基础,确保了AI驱动的决策是可靠且可理解的。关键字:神经网络;可解释的AI;毕业-CAM;解释性;准确性缩写:XAI:可解释的AI; LRP:层次相关性传播; Grad-CAM:梯度加权类激活映射; AI:人工智能; FNNS:前馈神经网络; CNN:卷积神经网络; Shap:Shapley添加说明1。引言人工智能(AI)已成为现代技术进步的基石,神经网络在各种应用中起着关键作用,例如图像识别,自然语言处理和预测分析。尽管取得了成功,但阻碍神经网络更广泛接受的主要挑战之一,尤其是在医疗保健,金融和自治系统等关键领域,它们缺乏解释性。这些模型的黑框性质使得很难理解它们如何处理输入数据并生成输出,从而导致信任和问责制。可解释的AI(XAI)已成为一个关键的研究领域,旨在使AI系统更加透明和可解释。XAI技术努力阐明复杂模型的内部运作,从而允许用户理解,信任和有效地管理AI驱动的决策。本文着重于通过将各种XAI技术整合到一个凝聚力框架中来增强神经网络的可解释性。目标是为利益相关者提供对模型预测的明确和可行的解释,促进信任并使AI系统在高风险环境中的部署。背景这项研究的动机源于AI系统对透明度和问责制的需求不断增长。例如,在医疗保健中,临床医生需要了解AI驱动的诊断建议,以信任和对它们采取行动。同样,在金融中,利益相关者必须理解基于AI的风险评估,以确保公平性和法规合规性。在自主系统(例如自动驾驶汽车)中,了解决策过程对于安全性和可靠性至关重要。解决这些需求时,我们的研究旨在弥合高性能神经网络与可解释性的基本要求之间的差距,从而促进对各种关键应用程序的AI系统的更大接受和信任。神经网络,尤其是深度学习模型,由于能够从大型数据集中学习并捕获复杂的模式,因此在众多应用程序中取得了前所未有的成功。但是,它们的复杂体系结构通常由多个隐藏的层和数百万个参数组成,使它们变得不透明且难以解释。对AI的解释性的需求导致了旨在揭开这些黑盒模型的几种XAI技术的开发[1,2]。
处理步骤,但对于带有可变音调的打印图案,它的灵活性较小。此外,将DSA应用于高量制造的主要挑战之一是观察到的缺陷密度,该缺陷密度分别大于所需的缺陷密度为1和0.01缺损cm 2用于记忆和逻辑应用。最常见的缺陷是桥梁和位错。,即使EUVL也没有缺陷问题,如先前的工作4、5所述,并且被证明会导致桥梁缺陷。为了解决大型缺陷密度的关注,尤其是在DSA中,采用各种过程的选择步骤来确定可以减少整体缺陷密度的重要因素;优化步骤包括不同的退火条件,表面模式的周期性,指南线的宽度,模式的地形以及背景化学等。对于列出的处理步骤的每一个组合,进行扫描电子显微镜(SEM)图像的缺陷检查以评估处理条件的性能是必不可少的。这涉及为统计目的收集足够数量的SEM图像,并手动执行缺陷检测或使用图像处理工具。随着处理步骤的不同组合的数量增加,缺陷的手动标记效率低下。解决方案之一是使用新兴的深度学习算法来检测和分类不同类型的缺陷。在材料科学领域,已经应用了许多算法来从给定的图像集中学习复杂的缺陷特征。例如,(1)Xie等。6使用多级支持向量机算法来检测印刷电路板和晶圆中最常见的缺陷。这些缺陷涉及环,半圆,簇和划痕。(2)Zheng和Gu 7采用了学习算法的机器,以检测具有高准确性的石墨烯中多个空缺数量。(3)Tabernik等。8报道了一项研究,在该研究中,他们利用基于细分的深度学习体系结构从某些工业应用的角度来检测成品中的表面异常。对缺陷的深度学习辅助识别不仅限于材料科学领域,因此已在其他各个领域中用于诸如下水道管道9、10和水果缺陷检测中的缺陷检测。11我们认为,使用这种自动化方法来计算不同类型的缺陷,并指定其在线路和空间(L/S)模式中的位置,可以帮助过程工程师快速收集足够的统计数据,并提供更准确,更一致的方法来评估每个处理条件的组合。通常,需要大量培训样本以确保网络的高精度。不幸的是,如前所述,由于人类的努力和专业知识所需的负载,因此要求SEM图像中存在的缺陷标记的时间耗时的过程。这为收集足够的数据构成了深度学习网络所需的精度的障碍。13,14另一种数据增强方法是通过执行模拟来扩展数据集。数据增强是一种可行的选择,可以通过利用原始数据集中的更多信息来夸大培训数据集。如Shorten和Khoshgoftaar的评论论文所讨论的,12个增强策略包括几何和颜色变换,随机擦除和特征空间扩展。翻转图像是最简单,最便宜的策略之一,结合了其他几何形状转换,旋转和缩放的几何变换可提高深度学习算法的准确性。在Carrasco-Davis等人的天文事件的分类中探索了这种策略,15,其中作者依靠基于物理的模型来生成模拟数据集。参考。16,如Holtzman等人所述,使用点散射模型生成的模拟数据集为雷达图像模拟。17与真实的数据集混合在一起,可以提高船舶合成孔径雷达图像中目标识别的准确性。在这项工作中,使用最小的SEM数据集进行培训[O(100)图像],我们使用了一个受良好版本3的启发的对象分类和检测网络。在剪切 - 索尔沃退火条件下使用圆柱体组成共聚物进行实验后,收集了SEM数据集。19网络中的卷积层和过滤器的数量已针对网络的准确性进行了优化。实施了各种激活功能和不同损失功能的进一步检查。使用两种策略夸大了具有有限数量SEM图像的初始数据集:(1)几何转换
机器学习模型是自动化任务的强大工具,使其更加准确和高效。这些模型可以按需求处理新的数据并扩展新的数据,从而提供有价值的见解,以提高随着时间的推移绩效。该技术具有许多好处,包括更快的处理,增强的决策和专业服务。机器学习模型是在看不见的数据集中识别模式以做出决定的软件程序。自然语言处理(NLP)使用机器学习模型来分析非结构化文本并提取可用的数据和见解。图像识别是机器学习的另一种应用,它可以识别人,动物或车辆等物体。机器学习模型需要一个数据集来培训和在优化过程中使用算法,以查找数据的模式或输出。基于数据和学习目标有四种主要类型的机器学习模型:1。**监督模型**:这些模型使用标记的数据来发现输入特征和目标结果之间的关系。2。**分类**:这种类型的模型将类标签分配给看不见的数据点,例如对电子邮件进行分类或预测贷款申请人的信誉。常见分类算法包括: *逻辑回归 *支持向量机(SVM) *决策树 *随机森林 * K-Nearest邻居(KNN)预测使用输入功能作为基础的连续输出变量预测连续输出变量在现实世界中至关重要,例如预测房地产价格,股票市场趋势,股票市场趋势,客户销售速率,销售速度和销售费用和销售。常见回归算法包括:1。回归模型利用这些功能来了解连续变量和输出值之间的关系。他们应用了学习的模式来预测新的数据点。**线性回归**:使用直线建模关系。2。**多项式回归**:使用更复杂的函数(例如二次或立方)用于非线性数据。3。**决策树回归**:一种基于决策树的算法,可预测分支决策的连续输出。4。**随机森林回归**:结合了多个决策树,以确保准确稳健的回归预测。5。**支持向量回归(SVR)**:调整支持向量机概念的回归任务,找到一个密切反映连续输出数据的单个超平面。无标记数据的无监督学习交易。它涉及使用聚类算法进行分组类似的数据点,例如:1。** K-均值聚类**:基于相似性将数据分组为预定群体。2。**分层聚类**:构建群集的层次结构,以轻松研究组系统。3。** DBSCAN(基于密度的空间群集使用噪声)**:即使在缺少数据或异常值的区域,也可以检测高密度数据点。降低维度在处理大型数据集时也至关重要。它降低了维度以维护关键功能,从而更容易可视化和分析数据。技术包括:1。2。** PCA(主要组件分析)**:通过将数据集中在更少的维度中来识别最重要的维度。** LDA(线性判别分析)**:类似于PCA,但专为分类任务而设计。最后,也可以应用无监督的学习来检测异常 - 数据与大多数的点大不相同。在数据分析中对异常值,半监督学习和强化学习的建模得到了奖励,并受到所需的行动的奖励,并对不希望的行为进行惩罚有助于玩家获得最高的回报。这种方法还涉及基于价值的学习,其中像机器人一样的代理商学会了通过获得达到末端并在撞墙时损失时间来浏览迷宫的过程。算法Q学习可以预测每个州行动组合的未来奖励,从而通过重复评估和奖励更新其知识。基于策略的学习采用了不同的途径,重点是直接学习映射到行动的政策。Actor-Critic将策略更新与价值功能再培训结合在一起,而近端策略优化解决了早期基于政策的方法中的高变化问题。深度学习利用人工神经网络识别复杂的模式。诸如人工神经网络(ANN),卷积神经网络(CNN)和经常性神经网络(RNN)之类的模型用于图像识别,自然语言处理和顺序数据分析等任务。机器学习模型利用各种功能来输入数据并产生预测,包括线性方程,决策树或复杂的神经网络。学习算法是负责在训练过程中适应模型参数以最小化预测错误的核心部分。培训数据包括输入功能和相应的输出标签(监督学习)或无标记的数据(无监督学习)。目标函数衡量预测和实际结果之间的差异,目的是最大程度地减少此功能。优化过程,例如梯度下降,迭代调整参数以减少错误。一旦受过培训,就会在单独的验证集上评估模型,以评估概括性能。最终输出涉及将训练有素的模型应用于新的输入数据以进行预测或决策。高级机器学习模型包括神经网络,这些神经网络成功地解决了复杂问题,例如图像识别和自然语言处理。卷积神经网络(CNNS)处理符号数据,例如图像,而复发性神经网络(RNN)处理顺序数据(如文本)。长期短期内存网络(LSTMS)识别长期相关性,而生成对抗网络(GAN)通过从现有数据集中学习模式生成新数据。机器学习模型随着时间的流逝而发展,产生了两个网络:一个产生网络数据,另一个区分真实样本和假样品。变压器模型通过随着时间的推移处理输入数据并捕获长期依赖性,从而在自然语言处理中获得了知名度。*医疗保健:机器学习预测疾病,建议治疗并提供预后。机器学习的现实应用程序包括: *金融服务:银行使用智能算法来了解客户的投资偏好,加快贷款批准并检测异常交易。例如,医生可以为患者预测正确的冷药。*制造业:机器学习通过提高效率和确保质量来优化生产过程。*商业领域:ML模型分析大型数据集,以预测趋势,了解营销系统并为目标客户定制产品。机器学习中的挑战包括: *有限的资源和工具,用于上下文化大数据集 *需要更新和重新启动模型以了解新的数据模式 *收集和汇总不同技术版本之间的数据以应对这些挑战,战略规划,适当的资源分配以及技术进步至关重要。