摘要。研究了雏鸡对传染性法氏囊病 (IBD) 疫苗重复接种的反应率。八组 10 日龄雏鸡接受了第一剂 IBD 疫苗接种。首次接种疫苗 (PV) 后三周,四组重复接种疫苗,其余四组作为对照。从重复接种疫苗三周后开始,每周从一对组中收集血清,使用定量琼脂凝胶沉淀试验 (QAGPT) 进行分析,以评估抗体水平。在加强组中,重复接种疫苗三周后抗体滴度达到峰值。此外,加强组的平均抗体滴度高于单次接种疫苗的组,持续时间更长 (P < 0.05)。关键词:鸡、琼脂凝胶沉淀、抗体水平、IBD、加强疫苗接种简介。控制 IBD 的主要方法是用 IBD 疫苗接种易感禽类 (Ezeibe, et al , 2009)。然而,据观察,由于病原病毒突变体的出现(Jackwood 等人,2008 年,Jackwood 等人,2011 年)以及雏鸡对疫苗接种的反应不佳(Abdu,2001 年),IBD 在接种疫苗的鸡群中爆发很常见。Lin – Yusher 等人(1997 年)报告说,在中国,目前使用 IgG 和高免疫血清的组合来预防和治疗 IBD。在美国,IBD 病毒株 2512 与法氏囊病抗体相结合,制成 IBDV – BDA 复合疫苗,这种疫苗甚至对具有母体抗体的雏鸡也有效(Aliyu 等人,2016 年)。据报道,IBD 在热带地区造成的雏鸡死亡率高于在温带国家造成的死亡率(Musa 等人,2012 年)。因此,热带地区的研究人员也需要寻找新的方法来提高雏鸡对 IBD 疫苗接种的免疫反应。这涉及评估影响动物对感染或疫苗接种的免疫反应的因素。病毒疫苗会刺激抗体的产生 (White, 1984),在大多数情况下,抗体通过抑制病毒附着在宿主细胞上 (Victoria, 2010) 来预防病毒感染。这种主动免疫反应是特异性的 (Liao, 2013),可以识别以前遇到的抗原。当动物的免疫系统识别出重复遇到的抗原时,它会针对该抗原启动强烈的记忆免疫反应 (Paul, 1989)。对首次感染或接种疫苗的抗体反应通常是 IgM,它会迅速消退,但当重复经历相同的感染或接种疫苗时,抗体反应会更快、水平更高,主要是 IgG,持续时间更长 (Klein, 1990)。因此,该实验的目的是研究小鸡在热带环境中重复(加强)接种 IBD 疫苗的免疫反应,以此作为提出更有效的疫苗接种方法来控制动物流行病的一步。材料和方法。研究使用了 80 只小鸡。这些小鸡在 10 日龄时接种了 IBD 疫苗(尼日利亚沃姆国家兽医研究所)。然后将它们分成 8 组,每组 10 只。接种疫苗三周后,对 4 组小鸡重复接种 IBD 疫苗。其余 4 组作为对照组。每周对一组接种了加强 IBD 疫苗的小鸡和对照组小鸡进行采血,并将其血清用于定量琼脂凝胶沉淀试验 (QAGPT)
2。科学界:向科学家告知他们如何以满足用户需求的方式开发和计划未来的科学活动。这种方法支持负责任的科学议程,并充当质量控制措施,以确保以有价值和有意义的方式发展技术。调查结果还建立了科学家的能力,以反思其工作的社会和道德考虑。了解澳大利亚人解决当前问题所需的科学和技术可能会导致更大,更有效的科学创新。
最近的工作表明,HH10雏鸡大脑中祖细胞的发育潜力迅速变化,伴随着形态的细微变化。这需要在此阶段增加对大脑研究的时间分辨率,因此需要精确和公正的分期。在这里,我们调查了是否可以使用151个专业标记图像的小数据集训练深卷卷神经网络为次级HH10小鸡大脑。通过使用生物学知情的转换和数据驱动的预处理步骤来增强我们的图像,我们成功地将分类器训练为次级HH10大脑至87.1%的测试准确性。为了确定是否可以使用分类器,我们使用随机对照和实验性小鸡机翼的图像(269)对其进行了重新训练,并获得了类似的高测试准确性(86.1%)。显着性分析表明,生物学相关的特征用于分类。我们的策略可以培训图像分类器,用于具有有限的显微镜数据的发育生物学中的各种应用。
高胚胎死亡率令人担忧,因为这会影响商业鸵鸟养殖。通过对孵化雏鸟进行适当的干预,可以提高存活雏鸟的数量。从南非奥茨胡恩研究农场的商业配对繁殖鸵鸟群中收集了 2,683 枚受精蛋的数据,其中报告了 169 只雏鸟。受精蛋在孵化第 41、42 和 43 天被随机分成三组。共有四种处理方法:达到高潮并自行破壳的雏鸟(T1)、在出现第一次外部啄壳迹象时被协助达到高潮的雏鸟(T2)、在出现第一次外部啄壳迹象时从蛋壳中取出的雏鸟(T3)以及 43 天后在内部啄壳但未能在外部啄壳的蛋破裂(T4)。孵化时进行了临床测量(心率、体温和水肿)。雏鸡在第 7 天称重,然后在第 28、84、147、227、300 和 365 天称重。在内啄后得到帮助的雏鸡孵化时间更长。自行孵化的雏鸡心率为每分钟 115 次 (bpm),低于其他治疗组的 132 次/分钟。孵化后第二天,雏鸡体重下降了约 4%。第一周,雏鸡体重从 0.85 公斤增加到 1.11 公斤。在 147 天时,与蛋壳破裂的雏鸡相比,在两次治疗之间自行孵化的雏鸡体重高出 12.6%,而外啄后去除蛋壳的雏鸡体重高出 24.6%。雏鸡通过达到高潮而受益,但对于难以孵化的雏鸡,这项研究为孵化场操作员提供了在特定阶段进行监测和协助对于提高孵化率至关重要的指导。
家禽业是一种商业化和工业化的生产系统,旨在实现高效率和高生产力。这是通过多年来基于科学技术的发展实现的,特别是在动物育种和遗传学方面。商业化的系统育种始于曾祖代种鸡 (GGPS) 阶段,生产出指定为祖代种鸡 (GPS) 的雏鸡,这些雏鸡后来长成父母代种鸡 (PS)。PS 成为日龄雏鸡 (DOC) 的商业生产者,用于人类消费的商业肉鸡生产的最后阶段。家禽蛋鸡业也采用同样的层级结构来生产鸡蛋。
妊娠期间(Smollin&Olson,2008)。怀孕期间的急性与早产和自发流产有关,怀孕可能取决于孕产妇中毒和胎儿年龄的严重程度(Smollin&Olson,2008年)。胎儿死亡可能发生在非致死性母体一氧化碳暴露时(Longo,1977)。通常认为CO中毒会造成严重的损害和死亡,但对低级暴露的了解少得多。CO暴露于6 ppm及较低的情况可能会影响血管功能(Bendell et al。,2020)和流行病学研究报告胎儿的孕产妇CO暴露与胎儿的隔离缺陷之间的关联(Dadvand等,2011a; Ritz等人,Ritz等,2002; Zhang et al。但是,其他研究未能复制这些发现(Chen等,2014)。作为胎儿cohb,在稳态条件下,比母体Cohb高10% - 15%(Longo,1977),在长期暴露期间,敌人可能尤其处于危险之中。CO暴露在人类中很难进行实验研究。在持续时间和数量方面,交付道德的CO水平都受到限制。虽然使用人类中的低级CO干预进行了一些工作,例如Bendell等人。(2020),此类研究在孕妇中是不可行的。 雏鸡是发展研究的常见模型,因为胚胎在OVO中很容易通过哺乳动物高度保守的渐进器官开发。(2020),此类研究在孕妇中是不可行的。雏鸡是发展研究的常见模型,因为胚胎在OVO中很容易通过哺乳动物高度保守的渐进器官开发。这也是CO研究的好模型,因为CO在雏鸡中的反应类似于哺乳动物的反应(Stupfel等,1982)。此外,在Hamburger-Hamilton阶段35(胚胎日(d)9)雏鸡胚胎心脏及其四个腔室与人类心脏的结构相似,而不是其他非哺乳动物模型生物(Wittig&Munsterberg,2016年)。可以轻松控制卵子的气态环境,从而进一步巩固其作为CO研究模型的实用性。在发育的10天后,雏鸡的心脏完全形成(Vilches-Moure,2019年)。当前研究的目的是询问低级CO暴露对雏鸡胚胎早期发育的影响,尤其是专注于心脏发育。
叶酸通过防止神经crest细胞的破坏和小鸡胚胎模型中的神经crest细胞的破坏和畸形,可减少MSG诱导的致致致造性Nakhon Rathom,Mahidol University,Siriraj医院,泰国2号,泰国2号病理科学系,科学系,Mahidol University,Mahidol University,Nakhon Rathom 73170,泰国3病理学信息与学习中心,病理学系,病理学系,科学大学,Mahidol University,Mahidol University,Mahidol University,Mahidol University,Nakhon Patherom 733170,Mahidol University, * 33170-0-therm 733170,EM: thanaporn.run@mahidol.ac.th)收到:2023年1月23日,修订:2023年2月13日,接受:2023年2月15日,发布:2023年3月20日摘要
甲状腺激素在出生时激活高认知能力 ~ 大脑中甲状腺激素激增和鸟类认知灵活性的发展 ~ 日本东京帝京大学的 Koichi Homma 及其同事证明,新生雏鸡表现出高认知灵活性,而印记行为会通过大脑中甲状腺激素激增来显著提高这种灵活性。印记过程中的这些激素激增通过涉及鸟类前额叶皮层的机制促进认知灵活性。科学杂志《科学进展》上的文章强调了这种生理激增对采用原始方法的雏鸡认知灵活性发展的重要性。作者提出甲状腺激素是脊椎动物大脑中保存的重要刺激物,对进化至关重要。
疫苗接种计划Encefal-VAC用于未来层和育种者的疫苗接种,以避免由于雏鸡的脑脊髓炎而导致的任何死亡率和鸡蛋产量减少。最合适的疫苗接种年龄在第三个月至第四个月之间。建议在其他疫苗接种之间至少保持14天的间隔。年龄少于2个月的鸡或不得接种鸡蛋的鸡,因此必须至少1个月进行疫苗接种。
在斑马鱼中,Müller神经胶质在损伤,获得祖细胞特性并产生所有视网膜细胞类型时会发生增生反应(8)。大多数通过增生的müller神经胶质产生的细胞仍然是祖细胞,而少数细胞则分化为雏鸡retia中的特定神经元(9)。müller神经胶质可以在哺乳动物中被激活,但很少有人因受伤而增殖,并且不会补充损失的神经元(10)。损伤后哺乳动物中有限的müller细胞增殖可能是由于抑制性机制或有限的有丝分裂原理引起的。表征限制哺乳动物müller细胞增殖的机制可能会提供解锁哺乳动物休眠的再生潜力的线索(11)。müller神经胶质在人类视网膜损伤后可能会扩散,但没有人类视网膜神经元再生的证据。人类müller细胞(MIO系),从不同的后视网膜(12),Expressmüller和祖细胞标记中分离出来。生长因子刺激这些细胞表达有丝分裂后神经元标记(13,14)。FGF2是Müller增殖和重编程所涉及的因素之一(13,15)。没有任何损害,FGF2和胰岛素刺激Müller神经胶质,如雏鸡的神经毒性损伤所观察到的那样(15)。fgf2选择性地激活RAS/MAPK/ERK信号通路,该途径调节Müller增殖(16)。