本文介绍了实施生物量燃料的区域供暖系统(DHS),这是深度能量翻新演习的一部分,以实现具有最低二氧化碳排放碳的气候溶解校园。该案例研究是为西班牙普通大小的大学的瓦拉多利德大学进行的,具有大陆天气的气氛。在翻新之前,不同的构件具有广泛的化石燃料消耗水平,用于供暖和家庭热水在60至430 kWh/m2Å年之间。该集中式供暖系统的应用允许根据西班牙标准达到100 - 120 kWh/m 2的接近零能量建筑物(NZEB)的最低阈值。这些值对应于在大陆天气条件下的办公室中的最大欧洲。这项全面研究的结果表明,由于拟议的策略,这19座建筑物中有15座达到了NZEB目标。与原始的化石燃料动力锅炉相比,总体二氧化碳排放量下降了92.69%,从而使二氧化碳EMIS sions降低至1.57 kgco 2 /m2Å。因此,可以证明,通过可再生能源DHS的深度能量翻新策略具有在大陆天气条件下为大学实现NZEB的努力。
我们考虑三层 F 1 F 2 F 3 约瑟夫森结,它们在二维上是有限的,并且每个铁磁体 F i (i=1,2,3) 具有任意磁化强度。三层夹在两个 s 波超导体之间,它们具有宏观相位差∆ φ。我们的结果表明,当磁化具有三个正交分量时,超电流可以在∆ φ = 0 处流动。利用我们的广义理论和数值技术,我们研究了电荷超电流、自旋超电流、自旋扭矩和态密度的平面空间分布和∆ φ 依赖性。值得注意的是,当将中心铁磁层的磁化强度增加到半金属极限时,自偏置电流和感应二次谐波分量显著增强,而临界超电流达到其最大值。此外,对于很宽范围的交换场强度和方向,系统的基态可以调整为任意相位差 ϕ 0 。对于中间层 F 2 中的中等交换场强度,可以出现 ϕ 0 状态,从而产生超导二极管效应,从而可以调整 ∆ ϕ 以产生单向无耗散电流。自旋电流和有效磁矩揭示了半金属相中的长距离自旋扭矩。此外,态密度揭示了相互正交磁化配置的零能量峰的出现。我们的结果表明,这种简单的三层约瑟夫森结可以成为产生实验上可获得的长距离自偏置超电流和超流二极管效应特征的绝佳候选者。
摘要:在通常的具有偶数格点的Su–Schrieffer–Heeger(SSH)模型中,由于边缘态同时占据两端点,因此不易实现左右边缘态之间的拓扑泵浦。本文提出一种方案,研究由一维超导传输线谐振器阵列映射的偶数尺寸周期调制SSH模型中的拓扑边缘泵浦。我们发现最初在第一个谐振器中准备的光子最终可以以一定的比例在两端谐振器处被观察到。两端谐振器处最终的光子分裂表明本超导电路有望实现拓扑分束器。进一步,我们证明了两端谐振器之间的分裂比例可以从1到0任意调节,这意味着实现可调拓扑分束器是潜在的可行性。同时,我们还证明了可调拓扑分束器由于零能量模式的拓扑保护而不受系统中加入的轻微无序的影响,并且发现可调拓扑分束器对全局现场无序的鲁棒性远高于对最近邻无序的鲁棒性。我们的工作极大地拓展了拓扑物质在量子信息处理中的实际应用,为拓扑量子光学器件的工程化开辟了一条新途径。
磁体/超导体混合物 (MSH) 有望成为新兴拓扑超导相 [1, 2, 3, 4, 5]。接近 s 波超导体的一维 (1D) [6, 7, 8] 和二维 (2D) [9, 10, 11, 12] 磁系统均已显示出具有零能量端态和手性边缘模式的带隙拓扑超导的证据。最近,有人 [13] 提出,块体过渡金属二硫属化物 4Hb-TaS 2 是一种无间隙拓扑节点超导体 (TNPSC) [14]。然而,目前尚未在 MSH 系统中实验实现 TNPSC。本文我们介绍了在 s 波超导体顶部的反铁磁 (AFM) 单层中发现 TNPSC。我们的计算表明,拓扑相由 AFM 序驱动,从而导致无间隙时间反转不变拓扑超导态的出现 [15]。利用低温扫描隧道显微镜,我们在反铁磁岛的边界观察到低能边缘模式,它将拓扑相与平凡相分开。正如计算所预测的那样,我们发现边缘模式的相对光谱权重取决于边缘的原子结构。我们的研究结果确立了反铁磁性和超导性的结合是设计二维拓扑量子相的新途径。
拓扑量子计算可以通过将逻辑信息编码为具有非亚伯统计的任何人[1,2]来消除变形,并被认为是实现耐断层量量子计算机的最有效方法。Majorana零模式的行为就像Majorana Fermions一样,每种模式都是自身的反粒子[3],并承诺一个平台来实现代表非亚洲编织组的代表,从而实现拓扑量子计算[4,5]。然而,在实验系统(例如非常规超导体[6,7])中,Majorana零模式是否诱导零能量信号[8-13],铁磁原子链[14]和二维超导管vort vort [15,15]。无论如何,它不会影响Majorana零模式编织设计的探索。后来,还提出了高阶拓扑阶段作为物质的新拓扑阶段,其在多维维度下具有非平凡边界状态。例如,Langbehn等人。提出了二维二阶拓扑超导体,以实现零维的零零模式[17]。通过应用外部磁场[18-20],可以将一阶式托架超导体驱动为二阶对应方,其中局部Majorana零模式出现在拐角处[21 - 24]。要实现Majorana零模式的编织操作,关键过程是绝热时间依赖的
拓扑几何动力学(TGD)是一种统一的基本相互作用理论,它导致意识理论是基于一个新的本体论,称为零能量本体论(ZEO)的量子测量理论的概括。量子生物学是TGD的第二应用。量子引力将在量子生物学和意识中起关键作用,但在某种意义上,与penrose-hamerero理论相比非常不同。暗物质作为普通物质的阶段的TGD视图具有很大的有效Planck常数,这使得在任意长度尺度的量子相干性可能。也是时空和电磁场的新视图是中心的,并导致携带暗物质的磁体的概念,并充当控制它的生物体的“老板”,并从中获得了感觉输入(EEG)。ZEO的预测,普通状态函数降低的时间变化在图片中起着至关重要的作用。太阳和地球的磁体可能是有关量子引力量子相干性的关键参与者。量子重力康普顿时间τgr(按等效原理不取决于粒子质量)代表量子引力相干时间的最小值。如果时钟周期短于τgr,则统计确定性肯定会失败,但也可能会在更长的时钟周期中失败。人类和计算机的纠缠也是一种非常有趣的可能性,并且有一些证据表明这种纠缠。
•马萨诸塞州公司和机构提供的英联邦和附近国家的海上风能资源提供了难得的机会,可以通过集中的公共/私人计划来实现大量的区域经济和环境福利。为新英格兰南部,纽约和北部新泽西州(24 GW 3)建立目前的海上风管道,估计为开发,制造业和建设的地区企业的收入估计为415亿美元,另外每年13亿美元用于运营和维护。2023年对这项发展的劳动力要求研究估计,到2030年,英联邦的2,000 ftes净创造了净就业,到2050年,“业务与普遍案例”到2050年,该案例假设3.2 GW的OSW容量将在2030年安装。4扩展这些结果,在区域管道中完成具有既定现场控制的项目的完成可能会在2035年在该地区产生多达23,000个工作岗位。最后,海上风能设施产生的清洁电力将使英联邦目前对电力部门的当前温室气体(GHG)排放量减少61%,到2050年,占经济全面排放的12%。英联邦最近的净零能量路线图要求到2050年就在马萨诸塞州风能区域安装超过23 gw的矿石容量。
手性精确的频带(FBS)处于电荷中立性引起了人们的极大兴趣,提出了一种有趣的凝结物系统,以实现异国情调的多体现象,正如魔术角扭曲的双层石墨烯中特定的,用于超导性和基于三烯测量的超级素质性素质素质的超级吸光素,以实现Ececiton insecitons for EcciteNemation。然而,还没有开发出这种FB的通用物理模型。Here we present a mathematical theorem called bipartite double cover (BDC) theorem and prove that the BDC of line-graph (LG) lattices hosts at least two chiral exact flat bands of opposite chirality, i.e., yin-yang FBs, centered-around/at charge neutrality ( E = 0) akin to the chiral limit of twisted bilayer graphene.我们通过将其精确映射到六角形晶格的BDC的紧密结合晶格模型中来说明该定理,以分别用于强拓扑和三角形晶格的脆弱拓扑FBS。此外,我们使用轨道设计原理在非BDC晶格中实现这种异国风味的阳fb,以促进其真实的物质发现。本文不仅可以在Moiré异质结构以外的零能量上搜索精确的手性FB,而且还可以为发现具有FB启用的量子半导体而打开大门。
主要结合状态在拓扑超导体中出现,作为表现出空间非局部性的零能边缘状态。尽管取得了巨大进展,但对主要界面状态的检测仍然具有挑战性,主要是因为拓扑琐碎的安德里弗(Andreev)结合状态会产生相似的签名。在这项工作中,我们考虑了一个拓扑超导体,该拓扑超导体与量子点结合并研究其量子相关性的动态,目的是探索其纠缠特性。特别是,我们通过使用并发和不和谐来表征纠缠,这也与纠缠动态和返回概率相辅相成。我们发现,Majoragan在真正的零能量处的约束状态可以将最初的纠缠系统转变为其经典状态,而它们可以在有限的能量重叠的情况下创建最大的纠缠状态。有趣的是,我们表明该系统可以通过简单地控制Majorana非局部性来生成MBS和量子点之间最大纠缠的状态。我们证明,当初始状态是最大纠缠或可分离的情况下,尽管在后者中,但在长期动态中实现了最大纠缠的状态。此外,我们将我们的发现与常规费米(Fermion)产生的发现形成对比,并获得非常不同的纠缠签名。我们的工作提供了一种表征Majorana Bound State的替代方法,这也可以用于其用于量子信息任务的利用。
主要结合状态在拓扑超导体中出现,作为表现出空间非局部性的零能边缘状态。尽管取得了巨大进展,但对主要界面状态的检测仍然具有挑战性,主要是因为拓扑琐碎的安德里弗(Andreev)结合状态会产生相似的签名。在这项工作中,我们考虑了一个拓扑超导体,该拓扑超导体与量子点结合并研究其量子相关性的动态,目的是探索其纠缠特性。特别是,我们通过使用并发和不和谐来表征纠缠,这也与纠缠动态和返回概率相辅相成。我们发现,Majoragan在真正的零能量处的约束状态可以将最初的纠缠系统转变为其经典状态,而它们可以在有限的能量重叠的情况下创建最大的纠缠状态。有趣的是,我们表明该系统可以通过简单地控制Majorana非局部性来生成MBS和量子点之间最大纠缠的状态。我们证明,当初始状态是最大纠缠或可分离的情况下,尽管在后者中,但在长期动态中实现了最大纠缠的状态。此外,我们将我们的发现与常规费米(Fermion)产生的发现形成对比,并获得非常不同的纠缠签名。我们的工作提供了一种表征Majorana Bound State的替代方法,这也可以用于其用于量子信息任务的利用。