雾气是由于黄色液压系统舵伺服软管故障导致泄漏的液压油进入 APU,加热并雾化,然后进入飞机空调系统。调查未确定液压软管故障的原因。AAIS 确定,当机组人员拉动激活绳时,PBE 蜡烛的制造缺陷可能导致蜡烛异常点燃。
激光粉末床熔合中的功能分级材料成分有可能制造具有定制性能的复杂组件。实现这一目标的挑战在于,当前的激光粉末床熔合机技术仅设计用于处理粉末状原料。本研究介绍了一种用于激光粉末床熔合的多原料材料打印方法。利用胶体雾化,在激光粉末床熔合过程中,碳化钨纳米颗粒成功沉积在 316L 不锈钢粉末床上。通过这种方式,在惰性处理室气氛下,一定量的碳化钨纳米颗粒均匀分散在粉末床上。结果,用这种方法打印的样品强度有所增加。同样,胶体介质在产生的微观结构中也起着重要作用。它导致形成一致稳定的熔池和坚固的晶体结构。给出了成功分散大量纳米颗粒的建议。此外,还介绍并讨论了材料雾化在激光粉末床熔合中的应用前景。
摘要:在大鼠模型中,通过正电子发射断层扫描/计算机断层扫描/计算机断层扫描(PET/CT)成像跟踪鼻内气泡放射性标记的聚合物胶束纳米颗粒(LPNP)的命运,以测量鼻子到脑的递送。在体内寻求了一种新的无线电毒剂的定量时间和空间测试方案。用锆89(89 ZR)标记的LPNP通过鼻内或静脉输送,然后进行串行PET/CT成像。连续成像2小时后,将动物牺牲,并分离出脑结构(嗅球,前脑和脑干)。测量每个大脑区域的活性通过活动测量与相应的PET/CT区域进行比较。LPNP(100 nm PLA – PEG – DSPE+ 89 ZR)的串行成像通过鼻管内经室传递,与静脉内给药后1和2 h后1和2 h在大脑中的活性增加,与静脉内给药相比,与静脉内相关,这与ex vivo gamma gamma comma counting and AutoRodighice相关。尽管评估从鼻子到脑的交付是一种有前途的方法,但该技术有几个需要进一步发展的局限性。本文提供了一种用于气溶性鼻内递送的实验方案,该方案可能提供了一个更好地靶向嗅觉上皮的平台。
可变操作:Gusmer 型号 FF-1600 DVR 是一款独特的多功能双可变比率计量装置。该气动装置旨在为各种聚氨酯泡沫、弹性体和其他多组分系统和应用提供可变比率配比。它结合了之前 Gusmer 设计的成熟原理以及专门开发的技术创新,可实现可变比率混合和雾化、温度控制、可靠性和易于维护。
粉末式CCM-MC是一种非磁性的,钴铬合金,具有高强度,耐腐蚀性和耐磨性。该合金是类似于CCM和CCM以及合金的粉末冶金版本,是ASTM F 75铸造合金的高氮,中碳锻造版。通过真空感应熔化(VIM),然后是氮气雾化,产生了粉末气流CCM-MC粉末。它在激光添加剂制造过程中具有出色的焊接性,并且可以使用氮或氩气屏蔽气体进行处理。
本研究的目的是评估一种利用机械生成的原料进行定向能量沉积的新型再制造方法的能耗。气雾化是定向能量沉积原料的最先进的生产工艺,本研究将其纳入再制造工艺路径以提供比较方法。开发了利用这两种拟议工艺路径的再制造特定能耗模型,并将其应用于案例研究,以调查未来制造范式的节能机会。能源建模分三个阶段进行。首先,从实验观察中生成机械生成的原料生产能耗模型。其次,从实验观察、制造商报告的估计值和文献中的数据的组合中生成气雾化原料生产能耗模型。最后,定向能量沉积的能耗模型来自实验观察,与文献中报告的估计值相比具有优势。利用这些模型,比较了两种工艺路径中的特定能耗,并通过估算再制造支架的能耗来展示它们的应用。两种原料生产方法的比能耗相似。定向能量沉积工艺的比能耗是各自再制造路径中最大的组成部分,比前者高出一个数量级;提高沉积速率是降低总体比能耗的最重要因素。据估计,在修复原始部件质量的约 15% 时,所分析的再制造技术比更换技术消耗的能量更少。
附录 C 1. 斯坦福研究所图表 ...................................................................................... 326 2. PWA 材料图表 .............................................................................................. 328 3. 公式(发动机参数相互关系) ...................................................................... 346 4. 危险区域分类 ............................................................................................. 354 5. 空气滤清器选择指南清单 ...................................................................... 355 6. 空气/油冷却器选择指南清单 ...................................................................... 358 7. 气体燃料特性 ............................................................................................. 363 8. 液体燃料特性 ............................................................................................. 370 9. 符号列表 ............................................................................................. 372 10. 换算系数 ............................................................................................. 375 11. 入口水冷却(雾化) ............................................................................. 380 12. 整体 A 加权声级计算 ............................................................................. 383