摘要:在粒子理论计算、数值模型和积云参数化中,通常假设湿静能 (MSE) 绝热守恒。然而,由于假设了流体静力平衡,MSE 的绝热守恒只是近似的。这里评估了两个替代变量:MSE 2 IB 和 MSE 1 KE,其中 IB 是浮力 (B) 的路径积分,KE 是动能。这两个变量都放宽了流体静力假设,并且比 MSE 更精确地守恒。本文量化了在无序和有序深对流的大涡模拟 (LES) 中假设上述变量守恒而导致的误差。结果表明,MSE 2 IB 和 MSE 1 KE 都比单独的 MSE 更好地预测沿轨迹的量。 MSE 2 IB 在孤立深对流中守恒较好,而 MSE 2 IB 和 MSE 1 KE 在飑线模拟中表现相当。这些结果可以通过飑线和孤立对流的压力扰动行为之间的差异来解释。当假设 MSE 2 IB 绝热守恒时,上升气流 B 诊断中的误差普遍最小化,但只有当考虑热容量的湿度依赖性和潜热的温度依赖性时才会如此。当使用不太准确的潜热和热容量公式时,由于补偿误差,MSE 2 IB 产生的 B 预测比 MSE 更差。我们的结果表明,各种应用都将受益于使用 MSE 2 IB 或 MSE 1 KE 代替具有适当公式化的热容量和潜热的 MSE。
背景。星系团中的湍流压力大小仍存在争议,特别是与动态状态和用于模拟的流体力学方法的影响有关。目的。我们研究大质量星系团内介质中的湍流压力分数。我们旨在了解流体动力学方案、分析方法和动态状态对宇宙学模拟中星系团最终特性的影响。方法。我们使用无网格有限质量 (MFM) 和光滑粒子流体动力学 (SPH) 对七个星系团的一组放大区域进行了非辐射模拟。我们使用了三种不同的分析方法,基于:(i) 偏离流体静力平衡,(ii) 通过亥姆霍兹-霍奇分解获得的螺线管速度分量,以及 (iii) 通过多尺度滤波方法获得的小尺度速度。我们将模拟星团样本分为活跃星团和松弛星团。结果。我们的模拟预测,与松弛星团相比,活跃星团的湍流压力分数会增加。这在基于速度的方法中尤其明显。对于这些方法,我们还发现 MFM 模拟的湍流比 SPH 模拟的湍流增加,这与更理想化的模拟的结果一致。预测的非热压力分数在星团中心内为几个百分点(松弛星团)和约 13%(活跃星团)之间变化,并向外围增加。没有看到明显的红移趋势。结论。我们的分析定量评估了流体动力学方案和分析方法在确定非热或湍流压力分数方面的重要性。虽然我们的设置相对简单(非辐射运行),但我们的模拟与之前更理想的模拟一致,并且代表着对湍流的理解更近了一步。