上下文。在亮度log l / l⊙⊙5.2的亮度log log-type恒星中显示弱的风,质量损失速率低于10-8 m⊙yr-1。这意味着,与他们更庞大,更发光的兄弟姐妹不同,它们的光电层不会受到恒星风的强烈影响。目标。一种混合非本地热力学平衡(非LTE)方法 - 在LTE假设下与非LTE线形成计算相结合的线主静水压模型大气 - 测试了晚期O-Type恒星的分析,其质量为量高达25 m 25 m。研究了20个大多数尖锐的O8型O8至O9.7型恒星的银河恒星,以及先前使用全非LTE模型大气的文献中研究的Luminosity类V和IV样品。方法。使用Kurucz的A TLAS 12代码计算的静液压和平行大气结构以及合成光谱以及非LTE线形成代码D ETAIL和S URFACE,这些代码an和S Urface(涉及了湍流压力对大气的影响)。高分辨率光谱的大气参数。通过考虑恒星进化轨道和Gaia早期数据版本3(EDR3)视差来得出基本恒星参数。星际红色的特征是从紫外线到MID-IR拟合光谱能量分布。结果。对于16个样本恒星的所有派生参数都可以实现高精度和精度(4个对象显示复合体格)。湍流压力效应对于定量分析而言很重要。有效温度确定为1–3%的不确定性水平,表面重力为0.05至0.10 dex,质量高于8%,半径高于10%,并且亮度通常超过20%的不确定性。丰度均具有0.05-0.10 DEX的不确定性,并且在0.03–0.05 DEX(1σ标准偏差)一般而言。总的来说,先前研究使用统一的光球加风(全)非LTE模型大气的结果,并具有更高的精度。对于元素丰度,这些改进最为明显,并且发现较小的微涡轮速度。在我们的光谱距离与盖亚(Gaia)之间达成了总体良好的一致性。GAIA EDR3基于LAC OB1B关联以及开放簇NGC 2244,IC 1805,NGC 457和IC 1396的距离被确定为副产品。派生的N/C与N/O的丰度比率紧密地遵循了恒星进化模型的预示。恒星上的两个显示出非常高的CNO加工材料的混合,并且似乎源于二元进化。
上下文。天王星和海王星的气氛以分子氢和氦气为主。在对流层上部(0.1和10 bar之间),甲烷是第三个主分子,它凝结,在CH 4中产生垂直梯度。由于这种凝结物种比H 2重,因此,由于凝结而导致的平均分子量的变化是对流的因素,传统上仅视为受温度的控制。平均分子量的这种变化使干燥和潮湿的对流更加难以启动。观察结果也显示出甲烷丰度的纬度变化,人们可以期望从一个纬度到另一个纬度的不同垂直梯度。目标。在本文中,我们研究了甲烷的这种垂直梯度及其可以采取的不同形状的影响,包括大气方案,尤其是在冰巨头对流层中潮湿对流风暴的形成和抑制。方法。我们开发了一个3D云解析模型,以按要求的规模模拟对流过程。该模型是非静水的,包括与凝结相关的平均分子量变化的效果。结果。使用我们的模拟,我们得出结论,深层大气中干对流的典型速度相当低(以1 m/s的速度),但足以维持向上的甲烷转运,并且在甲烷冷凝水平上的潮湿对流得到了极大的抑制。在冰巨头中,该标准在80 K时产生的临界甲烷丰度为1.2%(大约对应于1条水平)。先前的研究得出了对甲烷蒸气量的分析标准,该标准应在饱和环境中抑制湿对流。我们首先通过数值验证了该分析标准。然后,我们表明这种关键的甲烷丰度控制了对流风暴的抑制和形成,我们得出结论,这些风暴的强度和间歇性应取决于甲烷丰度和饱和度。在CH 4超过深层大气中这种临界丰度的区域(在天王星上的赤道和中纬度和海王星上的所有纬度)中,稳定的层几乎完全充满了甲烷在凝结水平上的饱和。在此层中,潮湿对流被抑制,从而确保稳定性。只有弱潮湿的对流事件才能发生在该层上方,其中甲烷丰度变得低于临界值。抑制潮湿对流可防止强烈干燥并保持较高的相对湿度,从而有利于这些事件的频率。在CH 4在深层大气中保持低于这种临界丰度的区域(可能是在天王星上的杆子上),没有这样的层。更强大的风暴可以形成,但它们也有点稀有。结论。在冰巨头,干对流很弱,潮湿对流受到强烈抑制。但是,当通过干对流和湍流扩散将足够的甲烷向上运输时,零星的潮湿对流风暴就会形成。由于海王星的内部热流和较大的甲烷丰度,这些风暴在海王星上应该比天王星更频繁。我们的结果可以解释冰巨头中观察到的云的零星性,并有助于指导未来的观察结果,以测试这项工作的结论。
将残余应力效应纳入塑性、断裂和疲劳裂纹扩展模型以评估铝制船舶结构的可靠性 1.0 目标。 1.1 本项目的目标是开发一种经过实验校准和验证的计算工具,该工具可准确预测结构铝合金在残余应力影响下因疲劳和延性断裂而产生的塑性响应和失效。该数值工具不仅可用于铝制船舶结构的可靠性评估和生存力分析,还可用于制定船舶设计和优化的断裂控制计划。 2.0 背景。 2.1 近年来,计算力学的快速发展使工程师能够分析复杂的船舶结构、评估结构可靠性和优化结构设计。因此,对更精确的材料模型的需求变得越来越明显;特别是当最小化设计裕度成为重量优化或延长寿命的方法时。 2.2 船舶结构可能会受到大海或事故(如碰撞和搁浅)造成的极端载荷条件的影响。军用舰船在作战中还要承受严峻的载荷,在极端条件下,舰船结构可能会发生较大的塑性变形,这种变形可能是单调的,也可能是循环的,从而导致结构失效。2.3 到目前为止,绝大多数结构分析采用经典的 J 2 塑性理论来描述金属合金的塑性响应,该理论假设静水应力和应力偏量第三不变量不影响塑性行为。然而,越来越多的实验证据表明,J 2 塑性理论中的假设对许多材料来说是无效的。Gao 等(2009)注意到 5083 铝合金的塑性响应与应力状态有关,并提出了 I 1 -J 2 -J 3 塑性模型。2.4 等效断裂应变通常用作延性断裂准则,人们普遍认为它的值取决于应力三轴性(Johnson and Cook,1985)。然而,最近的研究表明,单独的应力三轴性不足以表征应力状态对延性断裂的影响。Gao 等人(2009)开发了一种应力状态相关的延性断裂模型,其中失效等效应变表示为应力三轴性和应力偏差的第三不变量的函数,并且针对 ABS Grade DH36 钢校准了该断裂模型。2.5 Gao 团队(Jiang, Gao and Srivatsan;2009)的先前研究开发了一种不可逆内聚区模型来模拟疲劳裂纹扩展。该模型已成功针对 7075 铝合金进行校准,并预测了紧凑拉伸剪切试样中的疲劳裂纹扩展。数值结果捕捉了加载模式和过载对疲劳裂纹扩展速率的影响。2.6 焊接接头广泛应用于船舶结构。然而,它们给建模和分析带来了很大的复杂性,例如母材、焊件和热影响区的材料行为和特性不同;焊趾处的几何不连续性(这会改变应力分布并导致焊趾处出现高应力)和残余应力。这些因素加剧了施加在底层材料上的局部应力,降低了不考虑此类影响的材料模型的准确性。焊缝通常不会在结构尺度上以这种详细程度建模,但由于这些原因,故障通常会在这个区域开始
乔治·贝佩特·康科迪亚大学(George Bepete Concordia University),7141 Sherbrooke St. W.,蒙特利尔,QC H4B 1R6。电子邮件:gbepete@gmail.com,george.bepete@concordia.ca,电话:+15148482424 ext。3268(办公室)学术任命,蒙特利尔大学,QC大学材料工程助理教授,2024年 - 现任物理学系2024年助理教授 - 宾夕法尼亚州立大学公园,宾夕法尼亚州大学公园,宾夕法尼亚大学公园,宾夕法尼亚大学助理研究教授2022 - 2022 - 2024年教育大学教育大学,美国韦特沃特夫妇,乔尼亚工厂,乔尼亚工厂,美国邮政编码。尼尔·科维尔论文:氮掺杂碳纳米管的化学蒸气生长,用于在有机光伏设备津巴布韦大学,哈拉雷,哈拉雷,津巴布韦MSC,可再生能源2009国立大学和科学大学,科学和科学技术,布拉维奥,布拉维奥,Zimbabwe BSC(HONS),2016年荣誉奖。过去的研究经验宾夕法尼亚州立大学物理学系,宾夕法尼亚州立学院,2017-2022,博士后研究顾问:毛里西奥·塞伦斯教授的主要责任包括对使用二维(2D)材料纳米材料合成的研究,该研究使用将分层的材料和将其组成型成型的型号和插入型成型的型号和插入型成型的物质插入中置于效率上的二维材料(2D)材料,以及超导性,超级电容器,碱金属离子电池和光电电池。将石墨烯还原为氢化石墨烯中的还原性功能,并研究了光电中应用的结构和性质之间的关系。达勒姆大学,英国化学系2016年至2017年博士后研究顾问:Karl Coleman教授的主要职责包括有关全长单壁碳纳米管(SWCNT)还原性解散的研究以及对单个SWCNT的电气和光学特性的研究。国家科学研究中心,CNRS,BORDEAUX,法国,2014 - 2026年,博士后研究顾问:Alain Penicaud教授的主要职责包括研究对单层石墨烯的无表面活性剂的无表面活性分散剂的研究,并在水中稳定在水中稳定水的碳纳米管,使用氢氧化离子稳定在水中,使用氢氧化离子静水技术,随后将其供应量化技术。Witwatersrand大学,约翰内斯堡,南非,2010年–2014博士学位顾问:Neil Coville教授化学蒸气的氮掺杂碳纳米管在有机光伏设备中应用。Rutgers大学,材料科学与工程系,新泽西州2011-2012合作者:Manish Chhowalla教授化学蒸气的氮化硼掺杂石墨烯材料用于有机光伏设备中。Rutgers大学,材料科学与工程系,新泽西州2011-2012合作者:Manish Chhowalla教授化学蒸气的氮化硼掺杂石墨烯材料用于有机光伏设备中。