警告:静电可能会在BPC中积累。•生物处理容器(BPC)可以充当静电电荷的绝缘体。如果将静电电荷转移到BPC中,则可以将电荷存储在BPC和/或内部产品中。这种现象因产品和使用而异。因此,确保进行危害评估并消除了静电冲击的风险是最终用户的唯一责任。•如果适用,可以将不锈钢耦合器接地到框架上,以消散BPC内材料的静电堆积。通过将所有BPC接地之前,在与它们接触之前将静电堆积耗散是一个好习惯。使用BPC时,建议使用非导电材料(例如非导电手套)。
抗静态环境:通过选择用于高质量记录的抗静态环境/实验室来避免静电电荷。使用一个带有抗固定地毯或地形覆盖或木质木地毯的房间,而不是普通的地毯或人工镶木地板。由木材,金属和皮革制成的家具比塑料材料和合成纺织品更可取。棉衣比羊毛和合成材料更喜欢。避免使用合成鞋底的鞋子。
抗静态环境:通过选择用于高质量记录的抗静态环境/实验室来避免静电电荷。使用一个带有抗固定地毯或地形覆盖或木质木地毯的房间,而不是普通的地毯或人工镶木地板。由木材,金属和皮革制成的家具比塑料材料和合成纺织品更可取。棉衣比羊毛和合成材料更喜欢。避免使用合成鞋底的鞋子。
极性相互作用:围绕分子移动的价电子可能不会对称分布。最接近周期桌右上角的非金属元件 - 氮,氧,氟和氯 - 倾向于将共享电子从碳和氢中转移。当有一个具有其中一个元素的官能团时,它具有轻微的负电荷,其余的分子(碳和氢)略有阳性。分子是极化的。其正切片被邻近聚合物的负截面所吸引。主链中的碳原子始终遵循具有四个共价键的八位字规则,因此无法沿链条传递额外的电子。如果将聚合物纤维一起摩擦,则可以建立静电电荷。
化石燃料的耗尽以及日益严重的环境问题引起了开发高性能储能设备的极大关注。在各种储能设备中,超级电容器正在成为研究的热点,并且由于它们的巨大优势,包括高功率密度,高电荷/放电率和长期循环寿命,它们弥补了电池和常规电容器之间的不同。1 - 5通常,根据电容器来源:电容器来源:电气双层电容器(EDLCS),伪电容器和混合电容器,可以分为三类。6 - 8在EDLC中,电容源自电极和电解质界面处的纯静电电荷积累。9,电极成为影响性能的重要因素。此外,电极的性能主要取决于电极材料。因此,电极材料的选择是电容器的关键步骤。
历史证据表明,静电放电 (ESD) 可能导致数据中心的可靠性问题。低湿度允许并增强静电电荷在隔离导体和绝缘材料上的积累,这可能会增加 ESD 引起的设备故障风险。除了增强电荷积累和增加保持电荷的能力之外,低湿度还会由于对火花产生的影响而增加放电期间的电流。高湿度可能有助于最大限度地减少 ESD 事件并降低其严重程度,但会显著增加能源消耗成本以及与操作环境变化相关的其他考虑因素。ASHRAE 1499-RP 下的这项研究项目确定了不同温度和湿度水平下 ESD 导致设备故障的风险之间的相关性。该研究为以下问题提供了答案:降低数据中心的湿度是否会显著增加 ESD 相关损坏或错误的风险?需要实施哪些额外措施来抵消任何显著的风险增加?
构建材料从其内部结构元素的几何布置中得出其性能。他们的设计依赖于连续的成员网络来控制大块的全球机械行为。在这项研究中,我们引入了一类材料,这些材料由离散的串联环或三维网络中的笼子颗粒组成,形成了多重型构建材料(PAMS)。我们提出了一个通用设计框架,将任意晶体网络转化为粒子串联和几何形状。响应小的外部载荷,PAM的行为就像非牛顿流体一样,显示出剪切粉状和剪切厚的响应,可以通过其融合拓扑控制。在较大的菌株下,PAM的行为像晶格和泡沫一样,具有非线性应力 - 应变关系。在Mictoscale,我们证明PAM可以响应于应用的静电电荷而改变其形状。PAM的独特特性为开发刺激反应材料,能量吸收系统和变形体系结构的路径铺平了道路。p