结果:基于AIS患者的结果,有104例发展HT,其余76个没有HT。HT组由27个出血性梗死(HI)和77个实质性渗透(pH)组成。HT患者的中性粒细胞与淋巴细胞比(NLR),基线国家卫生中风量表(NIHSS)得分(NIHSS)得分,梗死体积以及RADSCORE和较低的艾伯塔族中风计划早期CT评分(全部P <0.01)(所有P <0.01)。用于构建模型的最佳ML算法是逻辑回归。在培训和验证队列中,预测HT的临床,放射线和临床 - 放射线学模型的AUC值分别为0.829和0.876、0.813和0.813和0.898,以及0.876和0.957。在具有不同治疗方式,不同梗塞大小和中风时间窗口的亚组分析中,临床放射线学模型的评估准确性在统计学上没有意义(所有P> 0.05),总准确性为79.5%。此外,该模型在预测pH和HI子类别方面可靠地执行,精度分别为82.9%和92.9%。
从历史上看,记忆技术已根据其存储密度,成本和潜伏期进行了评估。除了这些指标之外,在低区域和能源成本中启用更智能和智能的计算平台的需求带来了有趣的途径,以利用非挥发性记忆(NVM)技术。在本文中,我们专注于非易失性记忆技术及其在生物启发的神经形态计算中的应用,从而实现了基于尖峰的机器智能。与先进的连续价值神经网络相比,基于离散的神经元“动作电位”的尖峰神经网络(SNN)不仅是生物纤维,而且是实现能量的有吸引力的候选者。nvms提供了实施几乎所有层次结构(包括设备,电路,体系结构和算法)几乎所有层次结构的区域和能量snn计算面料的承诺。可以利用NVM的内在装置物理学来模拟单个神经元和突触的动态。这些设备可以连接在密集的横杆状电路中,从而实现了神经网络所需的内存,高度平行的点产生计算。在架构上,可以以分布式的方式连接此类横梁,从而引入其他系统级并行性,这是与传统的Von-Neumann架构的根本性。最后,可以利用基于NVM的基础硬件和学习算法的跨层优化,以在学习和减轻硬件Inaccu-Racies方面的韧性。手稿首先引入神经形态计算要求和非易失性记忆技术。随后,我们不仅提供了关键作品的审查,而且还仔细仔细审查了从设备到电流到架构的不同抽象级别的各种NVM技术的挑战和机遇,以及硬件和算法的共同设计。
编辑器:M。Doser使用带有喷气机的事件和缺少横向动量的事件对boson看不见的宽度进行测量,使用37 fb -1,13 tev质子 - 普罗氏素的数据,该数据由Atlas detector在2015年和2016年收集。𝑍→Inv与𝑍→𝓁𝓁事件的比率是指未检测到的粒子,而𝓁则是电子或MUON的,并进行了测量并校正检测器的影响。具有至少一个具有𝑝t≥110GEV的中央射流的事件,同时选择了𝑍→INV和𝑍→𝓁𝓁→𝓁𝓁最终状态,以获得比率的相似相空间。看不见的宽度为506±2(Stat。)±12(Syst。)MEV,是最精确的基于后坐力的测量。结果与LEP的最精确确定和基于三个中微子世代的标准模型预测一致。
责任编辑:杨瑞静 美编:蔡云龙 电话:010-58302828-6868 E-mail:ysbyangruijing@163.com
Constant current 0.2C charge to FC Voltage, then constant voltage FC Voltage charge to current declines to 0.02C, rest for 10min, constant current 0.2C discharge to 2.8V, rest for 10min. Repeat above steps till continuously discharge capacity higher than 80% of the initial capacity of the battery. 电池以0.2C 充饱,静置10 分钟,然后以0.2C 放空, 静置10 分钟。重复以上充放电循环直至放电容量低于初 始容量的80%。
摘要:本篇综合综述通过研究采用功能性磁共振成像 (fMRI)、正电子发射断层扫描 (PET) 和脑电图 (EEG) 方法的研究,深入探讨了催眠的认知神经科学和催眠易感性的变化。重点关注领域包括催眠中的功能性脑成像相关性、作为催眠状态指标的脑电图波段振荡、催眠和清醒期间脑电图功能连接的改变,得出关键结论并提出未来的研究方向。所审查的功能连接发现支持以下观点:根据分离和冷控制催眠理论,催眠期间执行控制网络不同组成部分之间可用整合的中断可能与催眠反应期间对主体的改变评估相对应。一个有希望的探索途径是研究额叶的神经化学成分和非周期性脑电图活动在清醒和休息时如何与个体催眠能力的差异相关。未来研究催眠对大脑功能的影响应该优先研究不同神经网络中独特的激活模式。
a 德国于利希研究中心神经科学与医学研究所(INM-7) b 德国杜塞尔多夫大学海因里希-海涅医学院系统神经科学研究所 c 法国塞尔吉巴黎大学理论与建模实验室,CNRS,UMR 8089,塞尔吉-蓬图瓦兹 cedex 95302 d 德国于利希研究中心于利希超级计算中心(JSC)高级模拟研究所 e 德国于利希研究中心神经科学与医学研究所(INM-1) f 新加坡国立大学睡眠与认知中心、转化磁共振研究中心和 N.1 健康研究所 g 新加坡国立大学电气与计算机工程系 h 美国马萨诸塞州查尔斯顿麻省总医院 Martinos 生物医学成像中心 i 新加坡综合科学与工程项目(ISEP)
此预印本的版权所有者此版本于 2021 年 7 月 18 日发布。;https://doi.org/10.1101/2021.07.14.21260531 doi: medRxiv preprint
