我们采用多学科和现实的教育、研究和创业方法,使我们能够与行业、政府和学术界密切合作,解决与亚洲和世界相关的关键和复杂问题。我们院系、30 个大学级研究机构、卓越研究中心和企业实验室的研究人员专注于能源、环境和城市可持续性、疾病的治疗和预防、积极老龄化、先进材料、金融系统的风险管理和弹性、亚洲研究以及人工智能、数据科学、运筹学和网络安全等智慧国家能力等主题。
由于世界人口的增长,能源消耗迅速增加,工业能源消耗也随之增加。目前,印度尼西亚仍然使用化石燃料作为主要能源,由于化石燃料的不可再生性,持续使用化石燃料会导致稀缺问题。生物乙醇生产目前越来越激烈,这是因为有几个因素导致它更加激烈,即市场稳定性、低成本、可持续性、替代能源燃料的组成和化石燃料的灾难性枯竭。西米废料可用作环保的可再生资源。西米废料的生物乙醇生产过程使用酶和微生物发酵。西米废料的生物乙醇生产过程主要有四个部分。首先要做的是预处理过程,即干燥西米浆和脱木素过程。脱木素过程中的样品随后将用于水解过程,催化剂为 HCl。水解产物在 pH 为 5 时发酵,并加入带状酵母。然后,在蒸馏过程中需要滤液,然后使用 K2Cr2O7 试剂对其进行定性评估。使用面包酵母和湿西米渣发酵过程中得到的混合物可产生高达 45.70% 的生物乙醇水平。通过面包酵母发酵过程从西米废料中制造生物乙醇的过程有望帮助推动生物乙醇生产过程成为印度尼西亚的可再生能源。
这项研究旨在研究将木薯作为潜在的替代可再生能源的使用。所使用的研究方法是一种描述性方法,可以在研究设施量表中从木薯中制造生物乙醇。50千克新的木薯,包括1.5 mLα-淀粉酶蛋白在此温暖30-60分钟,包括1克面包酵母,65 g尿素和14 g NPP(氮,磷,磷,钾)。尽管询问中心的信息报告说效率可以达到30-40吨/公顷,但培养水平上的木薯效率为14.3-18.8至/ha。规定,木薯作为一种生物燃料织物来自具有重新属性的各种:高大的淀粉物质,高大的退位潜力,对生物和非生物胁迫安全,在培养和收集年龄方面的适应性。
TWINRIX 是使用在人类细胞培养物 (MRC5) 中生长的 HM 175 甲型肝炎病毒株配制而成,并用甲醛灭活。乙型肝炎表面抗原 (rys) 成分是通过培养基因工程酿酒酵母细胞 (面包酵母) 产生的,该酵母细胞携带乙型肝炎病毒表面抗原 adw 亚型的相关基因。甲型肝炎病毒抗原和乙型肝炎表面抗原 (rys) 均通过几个物理化学步骤纯化,并配制成吸附在铝盐上的单独抗原悬浮液。TWINRIX 是通过汇集纯化抗原的批量制剂生产的。批量甲型肝炎病毒抗原和乙型肝炎表面抗原 (rys) 制剂与目前许可的单价甲型肝炎 (Havrix) 和乙型肝炎 (Engerix-B) 疫苗制造中使用的制剂相同。标准化发酵和纯化程序确保批次之间的一致性。该疫苗与人体血液或血液制品无关。
图 1 人类与非人类物种之间共享的基因。系统发育树标注了每个物种中具有 1:1 直系同源物的人类基因百分比(以数字和每个圆圈的填充比例显示)。与人类共享的 1:1 直系同源物的绝对数量绘制为每个圆圈的颜色。使用 orthogene R 包构建。92 关键词:Anolis carolinensis,绿变色蜥;Bos taurus,牛;Caenorhabditis elegans,蛔虫;Canis lupus familiaris,狗;Danio rerio,斑马鱼;Drosophila melanogaster,果蝇;Equus caballus,马;Felis catus,猫;Gallus gallus,鸡;Homo sapiens,人类;Macaca mulatta,恒河猴;Monodelphis domestica,灰色短尾负鼠;小家鼠 (Mus musculus),家鼠;鸭嘴兽 (Ornithorhynchus anatinus),鸭嘴兽;黑猩猩 (Pan troglodytes),黑猩猩;褐家鼠 (Rattus norvegicus),褐家鼠;酿酒酵母 (Saccharomyces cerevisiae),面包酵母;粟酒裂殖酵母 (Schizosaccharomyces pombe),裂殖酵母;野猪 (Sus scrofa),猪;热带爪蟾 (Xenopustropicalis),西方爪蟾。
随着包括多重基因组工程在内的合成生物学工具的生物技术应用迅速扩展,构建战略性设计的酵母细胞工厂变得越来越可能。这在很大程度上要归功于 CRISPR/Cas 技术和高通量组学工具等基因组编辑方法的最新进展。模型生物面包酵母 ( 酿酒酵母 ) 是生产高价值代谢物的重要合成生物学基础。多重基因组工程方法可以加快酵母细胞工厂中有效异源途径的构建和微调。最近出现了许多利用这一点的多重基因组编辑技术。本综述重点介绍此类工具的最新进展,例如 delta 整合和 rDNA 簇整合与 CRISPR-Cas 工具相结合,可大大提高多重整合效率。还回顾了作为多拷贝基因整合创新替代方法的预置门系统的例子。除了多重整合研究之外,还讨论了替代基因组编辑方法的多重化。最后,我们讨论了涉及非常规酵母的多重基因组编辑研究以及自动化对于高效细胞工厂设计和构建的重要性。将 CRISPR/Cas 系统与传统酵母多重基因组整合或供体 DNA 递送方法相结合,可通过提高效率和准确性来加快菌株开发。诸如在基因组中预先放置合成序列等新方法以及改进的生物信息学工具和自动化技术有可能进一步简化菌株开发过程。此外,讨论的用于改造酿酒酵母的技术可以适用于其他工业上重要的酵母物种,以进行细胞工厂开发。
所有疫苗 — 如有任何问题,请咨询您的药剂师 是 否 如果回答请解释 是 您今天生病了吗?发烧、出皮疹或带状疱疹了吗?您是否对任何药物、食物(例如鸡蛋)、乳胶或任何疫苗成分(例如新霉素、甲醛、庆大霉素、硫柳汞、牛蛋白、苯酚、多粘菌素、明胶、面包酵母或酵母)过敏?您在接种疫苗后是否曾出现过严重反应?您以前接种过今天接种的疫苗吗? 疫苗/日期 您在过去 4 周内是否接种过任何疫苗或进行过皮肤测试?您是否曾癫痫发作、格林-巴利综合征 (GBS) 或任何神经或脑部疾病?您是否怀孕、哺乳或计划在未来三个月内怀孕?您是否吸烟、患有糖尿病、酗酒或免疫系统低下、脑脊液漏或人工耳蜗、慢性心脏病、肝病或肺病。(针对肺炎疫苗)您是否患有 HIV/AIDS、器官移植或骨髓移植、癌症、白血病、淋巴瘤、多发性硬化症、造血干细胞或任何其他免疫系统问题?活疫苗:Zostavax、MMR、LAIV、水痘您是否正在服用任何削弱免疫系统的药物?举几个例子:类固醇(如可的松、泼尼松)、硫唑嘌呤、6-巯基嘌呤、甲氨蝶呤、癌症或放射治疗、移植药物、类风湿性关节炎治疗、克罗恩病或牛皮癣。在过去的一年里,您是否接受过血液或血液制品(包括血浆/血小板制品)的输血,或者注射过抗病毒药物或免疫(丙种)球蛋白?您有血小板减少症或血小板减少性紫癜病史吗?(针对 MMR II)
如今,发酵已成为一个价值 10 亿美元的全球性产业(Scott 和 Sullivan,2008 年;Konings 等人,2000 年)。尽管发酵对人类极为有益,但几个世纪以来,人们对此过程仍知之甚少。老一辈人不了解完整、理想发酵背后的微生物学,因此他们使用具有理想特性的发酵产物中的优质覆盖盐水或酵母糊来引发新的发酵,这种技术被称为回流发酵。1680 年,安东·范·列文虎克 (Anton van Leeuwenhoek) 使用早期显微镜对活细胞进行了观察,1839 年,卡尼亚尔-拉图尔 (Cagnard-Latour) 也对发酵做出了贡献,人们将发酵理解为一个微生物诱导的过程,在此过程中,酵母从糖中产生乙醇和二氧化碳(Nanninga,2010 年)。法国里尔的一位工业家与路易斯·巴斯德 (Louis Pasteur) 合作,发现了乳酸菌在发酵中的作用。在乙醇生产中,存在酒精浓度降低和酸味的问题。尽管如此,这一发现永远地改变了发酵领域。巴斯德在 1857 年至 1860 年间发表了多篇论文,记录了在发酵样品中用能产生乳酸的微生物取代生产乙醇的酵母群。这些记录首次证明了发酵的细菌性质,在 19 世纪 30 年代之前,发酵被理解为糖的化学降解(Nanninga 2010)。1873 年,Joseph Lister 通过稀释发酵乳制备了第一个纯发酵剂。15 年后,Vilhelm Storch 意识到了纯培养物在发酵中的潜在影响,制备了用于使巴氏杀菌奶油变酸的纯培养物(Knudsen 1931)。发酵剂在乳制品发酵中的应用始于 19 世纪 90 年代左右的哥本哈根(Stiles and Holzapfel 1997)。 1934 年,新西兰开始商业化引入定义明确的发酵培养物(Cogan 和 Hill 1993),从此开启了“受控”发酵时代。如今,发酵剂被定义为一种由至少一种微生物的大量细胞组成的微生物制剂,添加到原料中以加速和控制食品发酵的进程(Leroy 和 De Vuyst 2004;Ayhan 等人 2005)。因此,现代人对发酵食品的理解是微生物代谢过程,将糖转化为酸、气体或酒精,以实现长期保存,同时产生理想的感官特性。据估计,目前每年售出的面包酵母达 60 万吨(Pretorius 等人 2015)。用于大规模发酵的发酵剂的商业化总产量估计每年超过 40,000 升,用于接种数万吨原料(Hansen 等人,2015 年)。