Los Alamos国家实验室是一项平权行动/均等机会雇主,由Triad National Security,LLC经营,为美国能源部国家核安全管理局根据合同89233218CNA000001运营。通过批准本文,出版商认识到,美国政府保留了不判有限定的免版税许可,以出版或复制已发表的此捐款形式,或者允许其他人出于美国政府的目的。洛斯阿拉莫斯国家实验室要求出版商根据美国能源部主持的工作确定这篇文章。Los Alamos国家实验室强烈支持学术自由和研究人员发表权;但是,作为一个机构,实验室并未认可出版物的观点或保证其技术正确性。
简介表面等离子体共振(SPR)是一种用于测量分子相互作用的光学技术。SPR。SPR信号直接取决于传感器芯片上介质的折射率。生物分子的结合导致传感器表面折射率的变化。在SPR实验中,将一个分子(配体)固定在传感器芯片上,并与第二分子(分析物)结合在流动下。响应以共振单元(RU)为单位,与表面的质量成正比。对于任何给定的相互作用剂,响应与与表面结合的分子数量成正比。响应被记录并显示为实时的感觉图。SPR实验可用于测量动力学结合常数(k a,k d)和平衡结合常数(亲和力,k a = 1/k d)。
摘要:本研究描述了通过将金纳米颗粒(AUNP)沉积到光纤传感器上实现的局部表面等离子体共振(LSPR)效应的光纤探针的基本原理。这个想法是读取AUNP的吸光度谱及其对环境参数的依赖性,即使用光纤周围的折射率。基本上,我们选择了一种薄的光纤来鼓励周围介质中存在evanscent波。此外,纤维表面已被功能化,允许AUNP嫁接,而光纤尖端上的银镜则允许读取以进行反射配置。反射光谱显示出与单个和汇总AUNP相关的吸光度特征。在本文中,峰吸收性,即对反射信号的深度进行了研究,作为周围折射率的函数,以用于化学传感。
摘要 — 提出了一种基于欺骗表面等离子体极化激元 (SSPP) 的全空间高扫描速率漏波天线 (LWA),其由 SSPP 设计和矩形周期金属贴片组成。电磁 (EM) 波沿 SSPP 传播并耦合到金属贴片以产生快速辐射波,可实现从后到前频率的波束扫描性能。此外,通过色散关系、空间谐波和电场分布解释了设计的辐射机制。所提出的 LWA 基于 −1 阶空间谐波辐射能量,通过控制贴片的周期可实现全空间和高波束扫描速率性能。仿真结果表明,LWA 在 12.9 至 16.5 GHz 频带内实现从 − 90° 到 90° 的全空间波束扫描,同时天线还保持了 7.35°/% 的高扫描速率。
1深圳的光子设备和物联网传感系统的关键实验室,广东和香港光纤传感器联合研究中心,射电频率异质整合的国家关键实验室,深圳大学518060,中国2 shenzen键盘/NON NON NONO MIPTORONICTIROURTION,NONERROCTION MIPTOROCTION,NONE MIPTORONICTIROURTION教育部/广东省物理与光电工程学院,深圳大学,深圳518060,中国3号广东人工智能与数字经济实验室(SZ) Koszykowa 75,00-662波兰华沙 *通信:yingwang@szu.edu.cn
摘要:本文提出了一种基于双SPP耦合用于亚波长限制的长距离混合波导。混合波导由金属基圆柱形混合波导和银纳米线组成。波导结构中存在两个耦合区,增强了模式耦合。强模式耦合使波导既表现出较小的有效模式面积(0.01),又表现出极长的传输长度(700 μm),波导的品质因数(FOM)可高达4000。此外,波导的横截面积仅为500nm×500nm,允许在亚波长范围内进行光学操作,有助于提高光电器件的小型化。混合波导的优异特性使其在光电集成系统中具有潜在的应用价值。
Pay,J。Y.,Medwal,R.,Nair,R.V.,Chaurasiya,A.,Battito,M.,Rawat,R.S.S.M。(2020)。控制爆发抢劫中过度词的等离子体。Letters,20(11),8305‑8311。
将定量分析与Hilic Polar代谢组学工作流程中的新第4代6495 LC/TQ结合在一起。靶向代谢组学方法提供了具有较大动态范围的代谢物的敏感而精确的测量。先前描述的是使用带有细胞或等离子体的Bravo样品制备平台的Hilic Polar代谢物工作流程,1290个Infinity II Bio LC,用于改善金属敏感分析物的性能,以及6495 LC/TQ质谱仪,具有〜500极性代谢物的数据库和保留时间(图1)。1 6495 LC/TQ的速度允许在同一注射中精确地分析以正离子模式和负离子模式的数百个分析物。此工作流程和数据库可以通过多种方式部署,从代谢物途径发现(分析)到样本中数百个分析物的半定量分析,或者使用同位素标记的内部标准品进行绝对定量。
粗糙的金属表面会导致表面等离子体极化子 (SPP) 严重散射,从而限制 SPP 的传输效率。在此,我们提出了一种设计超紧凑等离子体路由器的通用方案,该路由器可以在任意形状的粗糙表面上限制和引导 SPP。我们的策略利用了最近提出的变换不变超材料。为了说明这种方法的优势,我们进行了有限元模拟,结果表明所设计的表面波路由器的性能不受厚度变化的影响。因此,1/6 厚度的变换不变超材料层可以显著抑制任意形状的金属凸起或缝隙的散射。我们还给出了基于周期性金属/ε 近零 (ENZ) 材料堆叠实现这种超紧凑表面波路由器的蓝图。
摘要 P-糖蛋白(P-gp)在癌细胞中高表达可导致多药耐药(MDR),抗癌药物与P-gp抑制剂联用是逆转癌症MDR治疗的一种有前途的策略。本研究建立了一种无标记、无洗涤剂的系统,结合表面等离子体共振(SPR)生物传感器和苯乙烯马来酸(SMA)聚合物膜蛋白(MPs)稳定技术来筛选潜在的P-gp抑制剂。首先,利用SMA聚合物从MCF-7/ADR细胞中提取P-gp,形成SMA脂质体(SMALPs)。随后,将SMALPs固定在SPR生物传感器芯片上,建立P-gp抑制剂筛选系统,并测定P-gp与小分子配体的亲和力。方法学考察证明该筛选系统具有良好的特异性和稳定性。从50个天然产物中筛选出9个P-gp配体,并测定了它们与P-gp的亲和常数。体外细胞验证实验表明,粉防己碱、防己诺林碱、前花素B、新黄芩素和淫羊藿苷可以显著增加MCF-7 / ADR细胞对阿霉素(Adr)的敏感性。此外,粉防己碱、前花素B和新黄芩素可以通过抑制P-gp的功能来逆转MCF-7 / ADR细胞的MDR。这是首次将基于SMALPs的稳定化策略应用于SPR分析体系。SMA聚合物可以将P-gp保留在天然脂质双层环境中,从而保持P-gp的正确构象和生理功能。所开发的系统可以快速
