本书是对所有曾经和现在在美国空军阿诺德工程开发中心 (AEDC) 工作的男女同胞的致敬,他们为航空航天技术的进步做出了重大贡献。这些贡献使空军上将亨利·H·“哈普”·阿诺德“首屈一指的空军”的愿景成为现实。如果没有像 AEDC 这样的机构,许多使美国成为航空航天强国的飞行技术进步可能就不会实现。编写本书的愿景和方向来自前 AEDC 指挥官退役准将大卫·斯特林格和航空测试联盟 (ATA) 总经理大卫·埃尔罗德博士。ATA 公共事务办公室的工作人员汇编了公开发布的信息——由几代 AEDC 作家和摄影师制作——跨越半个多世纪来研究、编写和设计这本出版物。本书的制作归功于 ATA 公共事务部的全体员工,以及信息国际协会 (IIA) 图形和技术出版物人员的支持。主要贡献者包括:• Claude Morse — 执行编辑 • Darbie Sizemore — 编辑、首席作家 • Stephanie Warren — 研究员 • Thelma “Fuffy” Bearden、Janaé Daniels、Whitney Rogers、Kelly Sharpton — 布局、设计、制作 • Andrea Abrahams、Kathy Gattis、Philip Lorenz III、Raquel March — 写作、其他支持 • Mark Crowson、Peter MacNichols — 技术编辑 •
摘要:在三维(3D)空间中塑造语音波的流在控制物质的声音和热特性中起着至关重要的作用。到此末端,3D语音晶体(PNC)被认为是金标准,因为它们的完整语音带隙(PNBG)可实现对声音波抗的全向抑制作用。尽管如此,在高频制度中实现完整的PNBG仍然具有挑战性,因为获得了相应的要求的中尺度3D晶体,该晶体由连续的框架网络组成,并具有常规的构造。在这里,我们报告了DNA折纸设计的3D晶体可以用作最宽的完整PNBG的高超音速3D PNC。DNA折纸晶体 - 液化可以前所未有地提供3D晶体,从而实现了中尺度的连续框架3D晶体。此外,它们的晶格对称性可以分子编程为在对称组和数字的层次结构中处于最高水平,这可以促进PNBG的扩大。更重要的是,共形硅拟合可以使DNA折纸3D晶体刚性。总体,
1942 年至 1944 年间,美国陆军使用前卡迪斯湖音速轰炸目标 #3 作为加利福尼亚亚利桑那机动区的一部分,对部队进行沙漠环境适应训练,并测试在恶劣条件下使用的设备。1946 年至 1948 年间,这片土地还被驻扎在三月机场的第四航空队用作轰炸练习目标。通过历史数据调查和现场考察,前加的斯湖音速轰炸目标#3的某个区域已被确定为可能存在潜在爆炸危险的区域。已知或怀疑用于目标的弹药包括大口径弹药、带有炸药的练习炸弹、练习地雷和小型武器弹药。
速度能力通常以音速(称为 math 1)为单位进行分类,在标准海平面条件下,音速约为每小时 760 英里。接近音速的空气速度被归类为跨音速。亚音速是低于音速的速度。超音速范围从音速到大约五倍音速(math S),高超音速则高于 math 5。按速度能力分类只是风洞的几个重要特征之一。根据流经测试部分的气流来源和速度,风洞也称为:
速度能力通常以音速(称为数学 1)为单位进行分类,在标准海平面条件下,音速约为每小时 760 英里。接近音速的空气速度被归类为跨音速。亚音速是低于音速的速度。超音速范围从音速到大约五倍音速(数学 S),高超音速则高于数学 5。按速度能力分类只是风洞的几个重要特征之一。根据流经测试部分的气流来源和速度,风洞也称为:
作为对风洞结构、仪器和流动质量定期健康监测的一部分,在贝尔格莱德军事技术学院 (VTI) 的 1.5 m T-38 三音速风洞中对 AGARD-C 校准模型进行了一系列测试。测试包括测量跨音速马赫数范围内的力和力矩,目的是根据标准模型测试所采用的程序,将模型获得的空气动力学特性与其他风洞实验室的空气动力学特性进行比较。设施间相关性基于在加拿大国家研究委员会(后来作为国家航空研究所运营)的 5 英尺三音速风洞、罗马尼亚国家科学技术创造研究所的 1.2 m 三音速风洞和调试期间的 T-38 风洞中物理上相同模型的测试结果。对相关测试结果的分析证实了 T-38 测试段的流动质量良好、风洞结构和仪器状况良好以及数据缩减算法的正确性。在“正常”和“倒置”模型配置中获得的俯仰力矩系数数据中观察到了细微的差异,初步得出结论,这种影响可能是由于风洞试验段后部的流动略有不对称造成的,AGARD-C 模型以对俯仰的高灵敏度而闻名
CSIR-NAL,国家三音速空气动力学设施 (NTAF) 部门,1.2m*1.2m 三音速风洞用于亚音速、跨音速和超音速马赫数测试(0.2-4.0)。柔性喷嘴 (FN) 是三音速风洞的重要组成部分。喷嘴由一对柔性钢板制成,设置为沿流道顶部和底部形成适当的轮廓。它由位于 17 个站点的液压执行器操作和控制。这些钢板上的过应力是由于曲率设置错误(过度弯曲)或液压千斤顶故障(例如执行缸卡住)或曲率传感器问题造成的。曲率传感器组件安装在柔性喷嘴边缘的不同位置,以识别过应力。由于风洞测试持续时间限制(约 30-40 秒)和串联传感器,通过选择开关扫描来识别特定站点的应力发生情况非常具有挑战性。为了解决这个问题,在 1.2 米 Trisonic 风洞中实施了柔性喷嘴的实时健康监测系统。在这里,限位开关输出并联连接到基于 NI 的硬件。如果板上出现应力,它将被记录并显示在实时软件中。关键词:- 柔性喷嘴、马赫数、风洞、Trisonic、亚音速、跨音速、超音速
当物体穿过大气的速度大于当地音速时,该物体就是超音速物体。马赫数定义为物体速度除以当地音速。对于马赫数大于 1(超音速流),由于空气的压缩性,在流场中和物体表面附近会产生冲击波。传统上,所谓高超音速速度范围的马赫数下限约为 5 马赫(1.7 公里/秒)。“低高超音速”值的范围在 5 马赫到 10 马赫左右,而“高高超音速”值的范围在 10 马赫到 30 马赫或以上。例如,30 马赫(10 公里/秒)接近航天飞机的再入速度。很少有物体能够以高超音速飞行。我们看到以这种速度移动的最常见物体是进入地球大气层的流星。当流星坠落到地球表面时,它们的速度可能达到每秒 30 英里(48 公里/秒),1 而当它们进入大气层上层时,它们对应的马赫数将超过 150。流星在路径上立即压缩空气时,会先出现弓形冲击波。冲击波的温度和压力急剧增加,直到空气中的气体电离并分解,从而导致可见光和无线电波的发射。这些条件还会导致流星表面快速升温,导致它们在进入大气层时破裂和解体。光学和基于雷达的监视系统现在用于扫描外太空,以探测小行星和其他可能与地球相撞的轨道物体。