摘要。音频放大器是经典的、常用的电子电路;特别是在高瓦数放大器的应用中;A 类音频放大器最受欢迎,并且具有最佳音质。然而,它们的扩展率低,效率低。例如,著名的 A 类电路模型:Krell KSA-100,由 3 对复合功率放大器组成,使用正负 45 伏的电源,会一直产生高电流和高功耗,即,当输入信号电压为零时,电路会产生流过最终功率放大器(1 安培对)的电流。这导致总电流始终达到 3 安培或 137 瓦。研究人员将进行研究,通过降低电源电压来减少这种条件下的功率损耗,但电路仍可以像以前一样有效地扩展音频信号。实验用交流电源变压器调节输入电压,可在28伏至145伏之间调节,使直流电源在10伏至45伏之间改变电压。在8欧姆负载下输入100mVpp的输入信号,1kHz正弦波频率,并将电压从45伏降低到输出放大器仍能保持输入信号。实验结果表明,当降低电源电压时,功率损耗相应减少。
固定 I/O DSP 应专门设计用于 Tesira® 系统。固定 I/O DSP 应支持 Dante™ 数字音频网络,最多可支持 32 x 32 个通道。Dante 网络连接应在 RJ-45 连接器上实现。固定 I/O DSP 应根据 AES67 标准实现互操作。固定 I/O DSP 应支持以太网连接,用于在 RJ-45 连接器上进行编程和控制。固定 I/O DSP 应具有内部 DSP 处理功能。固定 I/O DSP 应包括 4 个通用输入和输出连接 (GPIO) 通道,用于发送或接收逻辑信号。GPIO 端口的编程应为软件可配置的。固定 I/O DSP 应包括 RS-232 连接,用于控制数据传输到固定 I/O DSP 或从固定 I/O DSP 传输数据,并且此类操作应为软件可编程的。固定 I/O DSP 应包括标准 USB-B 型连接器上的通用串行总线 (USB) 连接。固定 I/O DSP 应可由软件配置,以便将最多 8 个通道的数字 USB Class 1 音频传输流式传输到固定 I/O DSP 或从固定 I/O DSP 传输出去,或同时输入和输出。固定 I/O DSP 应支持通过 IEEE 802.1X 进行端口身份验证。固定 I/O DSP 应提供 12 个平衡输入连接,用于接收旋入式可拆卸连接器上的麦克风或线路电平模拟音频信号。固定 I/O DSP 应提供 8 个平衡输出通道,用于传输旋入式可拆卸连接器上的麦克风或线路电平模拟音频信号。每个单独的通道都应有自己的专用连接。固定 I/O DSP 应在前面板 OLED 上提供设备电源、状态、警报和活动以及系统范围警报的标识。固定 I/O DSP 应为机架安装式 (1RU),并具有软件可配置的信号处理功能,包括但不限于:信号路由和混合、均衡、滤波、动态和延迟,以及控制、监控和诊断工具。固定 I/O DSP 应带有 CE 标志、UL 认证,并应符合 RoHS 指令。保修期为五年。固定 I/O DSP 应为 TesiraFORTÉ® DAN AI。
摘要我们通过将光实际转换为声音提出了一类新的信号注入攻击。我们展示了攻击者如何通过将振幅调节的光瞄准麦克风的光圈将任意音频信号注入目标麦克风。然后,我们继续展示这种效果如何导致对语音控制系统的远程语音命令注入攻击。检查使用Amazon的Alexa,Apple的Siri,Facebook的门户网站和Google Assistant的各种产品,我们展示了如何使用光线来控制这些设备的控制,最多可达110米,并从两座独立的建筑物中获得。接下来,我们表明这些设备上的用户身份经常缺乏,使攻击者可以使用注射灯的语音命令来解锁目标的智能锁定的前门,敞开的车库门,在目标网站上以目标的费用上的电子商务网站购物,甚至可以解锁和启动与Target的Google Account(例如Google的帐户)相连(例如,to)(例如,tha sessla和tessla sesla and sesla and sesla and sesla and sesla and sesla and sesla&to)。最后,我们以可利用的软件和硬件防御措施来防止我们的攻击结束。
简介:FM 收音机是一个非常有趣的话题!我听不清楚妈妈在厨房跟我说话。有些是选择性听力的一部分,特别是当她问作业的时候。但我能听到有人在全国各地现场唱歌。解释一下!我们 Srivastha 和 Soham 都是音乐系的学生。因此,通过无线电波传输的声音显然是一个令人着迷的课题。声音如何在如此长的距离内传输而不损失其质量?理论:我们将理论理解为声波首先由幅度或频率 (AM 或 FM) 调制,然后使用高功率天线传输。FM 接收器是一个微型电子电路,能够接收 FM 信号,消除噪音,然后放大并将其转换为人类可以听到的音频范围。我们想尝试从头开始构建它并亲自测试它的工作原理。什么是 FM 发射器?FM 发射器是一种使用非常低的功率运行并使用(频率调制)FM 波传输声音的电路。借助此类 FM 发射器,我们可以轻松地通过不同频率的载波长距离传输音频信号。这就是广播电台/塔的作用。载波的频率与具有幅度的音频信号的频率相同。FM 发射器产生从 88 HZ 到 108 MHZ 的 VHF 范围。
摘要 - 我们根据光声效应提出了一类新的信号注入攻击:使用麦克风将光转换为声音。我们展示了攻击者如何通过将振幅调节的光瞄准麦克风的光圈将任意音频信号注入目标麦克风。然后,我们继续展示这种效果如何导致对语音控制系统的远程语音命令注入攻击。检查使用亚马逊的Alexa,Apple的Siri,Facebook的门户网站和Google Assistant的各种产品,我们展示了如何使用光线以最多110米的距离和两座独立的建筑物来获得对这些设备的完全控制。Next, we show that user authentication on these devices is often lacking or non-existent, allowing the attacker to use light-injected voice commands to unlock the target's smartlock-protected front doors, open garage doors, shop on e-commerce websites at the target's expense, or even locate, unlock and start various vehicles (e.g., Tesla and Ford) that are connected to the target's Google account.最后,我们以可能针对攻击的软件和硬件防御措施得出结论。索引术语 - 信号注射攻击,转导攻击,语音控制系统,光声效应,激光,MEMS
在肖像视频生成领域中,使用单个图像来生成肖像视频已经变得越来越普遍。一种常见的方法涉及利用生成模型来增强适配器的控制生成。但是,控制信号(例如,文本,音频,参考图像,姿势,深度图等)的力量可能会有所不同。在这些情况下,由于对较强的条件的干扰,较弱的条件通常难以有效,这在平衡这些条件方面构成了挑战。在我们在肖像视频生成方面的工作中,我们确定音频信号特别弱,通常被诸如面部姿势和参考图像之类的强信号所掩盖。但是,信号较弱的直接训练通常会导致收敛困难。为了解决这个问题,我们提出了V-Express,这是一种简单的方法,可以通过渐进式训练和条件辍学操作来平衡不同的控制信号。我们的方法逐渐通过弱条件实现有效的控制,从而获得了同时考虑面部姿势,参考图像和音频的发电能力。实验结果表明,我们的方法可以有效地生成由音频控制的肖像视频。此外,还提供了一种潜在的解决方案,以同时有效地利用各种强度的条件。
电路板布局 TA2020-020 是一款功率(高电流)放大器,工作在相对较高的开关频率下。放大器的输出在驱动高电流的同时,以高速在电源电压和地之间切换。该高频数字信号通过 LC 低通滤波器,以恢复放大的音频信号。由于放大器必须驱动电感 LC 输出滤波器和扬声器负载,因此放大器输出可能被输出电感中的能量拉高至电源电压以上和地以下。为避免 TA2020-020 受到可能造成损坏的电压应力,良好的印刷电路板布局至关重要。建议在所有应用中使用 Tripath 的布局和应用电路,并且只有在仔细分析任何更改的影响后才可以偏离。下图是 Tripath TA2020-020 评估板。电路板上最关键的组件之一是电源去耦电容。如图所示,C674 和 C451 必须放置在引脚 22 和 19 的旁边。如图所示,C673 和 C451B 必须放置在引脚 25 和 28 的旁边。输出级的这些电源去耦电容不仅有助于抑制电源噪声,而且还能吸收放大器输出过冲引起的 VDD 引脚上的电压尖峰。在发生高电流开关事件(如短路)期间,输出电感器反激也可能导致电压过冲
摘要 - Audio DeNoisisiques是增强音频质量的重要工具。尖峰神经网络(SNN)为音频转化提供了有希望的机会,因为它们利用了脑启发的体系结构和计算原理来有效地处理并分析音频信号,从而通过提高的准确性和降低了计算机上的高空空间,从而实现了实时Denoo。本文介绍了Spiking-Fullsubnet,这是一种基于SNN的实时音频DeNoising模型。我们提出的模型不适合一种新型的封闭式尖峰神经元模型(GSN),以有效捕获多尺度的时间信息,这对于实现高赋予音频降解至关重要。此外,我们建议将GSN集成在优化的全snet神经架构中,从而实现了全频段和子带频率的有效处理,同时显着降低了计算的额外处理。与体系结构的进步一起,我们结合了一个基于度量歧视的损失函数,该功能有选择地增强所需的性能指标而不会损害他人。经验评估表明,尖峰全鞋的表现出色,将其排名为英特尔神经形态深噪声抑制挑战的轨道1(算法)的赢家。索引术语 - 语言denoising,尖峰神经网络,neu-Romorphic Computing,Audio Signal Processing
• 音频内容必须以 48khz 采样率的 24 位未压缩 (PCM) 数字音频交付。• 所有混音都应为近场混音,同时考虑家庭观看声音体验。• 音频信号不应包含嗡嗡声、杂音、失真、丢失、混叠、嘶嘶声和其他令人反感的伪影。• 使用 EBU-128 测量音频节目响度和真实峰值音频电平。• 所有音频录制/混音/母带制作都应按照专业标准在标准环境中完成。禁止使用视频编辑工具进行混音。• 对于配音节目,对话、音乐和效果应与画面同步。• 应避免使用过度处理/清理。• 对话质量在音质、音量等方面需要保持一致。• 整体音质应令人愉悦,没有明显的噪音或杂散信号。• 所有音频通道从头到尾都应同相。• 禁止从单声道升频到立体声、立体声升频到 5.1、5.1 升频到全景声。提交的作品必须为原始混音状态。• 在所有制作场景中录制狂野氛围,以便在主程序中编辑的整个场景中保持相同的氛围。• 必须使用多轨录音机进行现场录音。录音参考电平应为 -20 dBFS
TA2020-020 是一款功率(高电流)放大器,工作在相对较高的开关频率下。放大器的输出在驱动高电流的同时,以高速在电源电压和地之间切换。该高频数字信号通过 LC 低通滤波器,以恢复放大的音频信号。由于放大器必须驱动电感 LC 输出滤波器和扬声器负载,因此放大器输出可能被输出电感中的能量拉高至电源电压以上和地以下。为避免 TA2020-020 受到可能造成损坏的电压应力,良好的印刷电路板布局至关重要。建议在所有应用中使用 Tripath 的布局和应用电路,并且只有在仔细分析任何更改的影响后才可以偏离。下图是 Tripath TA2020-020 评估板。板上最关键的组件是电源去耦电容。电容 C674 和 C451 必须放置在引脚 22 (VDD2) 和 19 (PGND2) 的旁边,如图所示。同样,电容 C673 和 C451B 必须放置在引脚 25 (VDD1) 和 28 (PGND1) 的旁边,如图所示。这些电源去耦电容不仅有助于抑制电源噪声,更重要的是,它们可以吸收由放大器输出过冲引起的 VDD 引脚上的电压尖峰。类似地,肖特基二极管 D1、D2、D3 和 D4 可最大程度降低相对于 VDD 的过冲,肖特基二极管 D702、D703、D704 和 D728 可最大程度降低相对于电源接地的下冲。为了获得最大效果,这些二极管必须位于输出引脚附近,并返回到各自的 VDD 或 PGND 引脚。二极管 D1、D2、D3 和 D4 仅适用于 VDD>13.5V 的应用。在高电流开关事件(例如短路输出或在高电平下驱动低阻抗)期间,输出电感器反激也可能导致电压过冲。如果这些电容器和二极管距离引脚不够近,则可能会对部件造成电气过应力,从而可能导致 TA2020-020 永久损坏。输出电感器 L389、L390、L398 和 L399 应放置在靠近 TA2020-020 的位置,而不会影响靠近放置的电源去耦电容器和二极管的位置。将输出电感器放置在靠近 TA2020-020 输出引脚的位置是为了减少开关输出的走线长度。遵循此准则将有助于减少辐射发射。