图 1:MRAM 示意图。(a) STT-MRAM 单元,(b) 和 (c) 具有电流诱导平面外和平面内自旋极化的 SOT-MRAM 单元。(b) 和 (c) 仅显示了 SOC 层顶面附近的自旋极化。
微电子药丸由经过机械加工的生物相容性(无细胞毒性)、耐化学腐蚀的聚醚醚酮 (PEEK) 胶囊和 PCB 芯片载体组成,后者是传感器、ASIC、发射器和电池连接的通用平台。每个制造的传感器都通过引线键合连接到定制的芯片载体上,该载体由 10 针、0.5 间距聚酰亚胺带状连接器制成。传感器芯片通过单独的 FCP 插座连接到 PCB 的两侧,传感器芯片 1 面向顶面,传感器芯片 2 朝下。因此,芯片 2 上的氧气传感器必须通过焊接到电路板上的 3,200 nm 铜引线连接到顶面。发射器集成在 PCB 中,PCB 还包含电源轨、传感器连接点以及发射器和 ASIC 以及载体所在的胶囊的支撑槽。胶囊被加工成两个独立的螺丝装配隔间。PCB 芯片载体连接到胶囊的前部。传感器芯片通过接入端口暴露在周围环境中。
桌面建议最大承重为 200 磅(90.7 千克)。文件柜顶面建议最大承重为 80 磅(36.3 千克)。织物箱建议最大承重为 10 磅(4.53 千克)。记录购买日期并保存本手册以供日后参考。如需零件和服务,请致电 1-800-949-9974。如需客户支持,供应商贴纸位于顶板下方前端。
固态连接技术如图 1 所示。该技术已广泛应用于铝合金、镁、铜、钛和钢。与传统的熔焊方法相比,FSW 工艺的优势包括机械性能更好、残余应力和变形小、缺陷发生率低 [1-2]。该焊接技术正在应用于航空航天、汽车和船舶制造业,并吸引了越来越多的研究兴趣。FSW 技术需要彻底了解该工艺,并随后评估焊缝的机械性能,以便将 FSW 工艺用于航空航天应用部件的生产。因此,需要进行详细的研究和鉴定工作 [3]。基于两块待连接板材的接合面摩擦生热,在 FSW 工艺中,一种带有适当设计的旋转探头的特殊工具沿接触金属板的厚度向下移动,通过相关的搅拌作用产生高度塑性变形区。局部热机械影响区是由工具肩部和板顶面之间的摩擦以及与工具接触的材料的塑性变形产生的 [4]。探头通常略短于工件厚度,其直径通常略大于
横截面是一种关键的样品制备技术,被广泛用于各种应用,它能够研究埋层和地下特征或缺陷。最先进的横截面方法各有优缺点,但通常都需要在吞吐量和准确性之间进行权衡。机械方法速度快但准确性低。另一方面,基于离子的方法,如聚焦离子束 (FIB),分辨率高但速度慢。激光器可以潜在地改善这种权衡,但它也面临多重挑战,包括产生热影响区 (HAZ)、过大的光斑尺寸以及材料再沉积。在这项工作中,我们首次利用飞秒脉冲激光器,这种激光器已被证明可产生极小甚至零的 HAZ,用于快速创建质量可与 FIB 横截面相媲美的大横截面。该激光器集成了靶向 CO 2 气体输送系统,用于再沉积控制和光束尾部削减,以及硬掩模,用于顶面保护和进一步缩小有效光斑尺寸。通过现实世界的例子展示了所提出的系统的性能,这些例子比较了激光和 FIB 横截面技术产生的吞吐量和质量。
颅内、眼内和血管内的压力是评估各种疾病患者的重要参数,对于刚从受伤或手术中恢复的患者尤其重要。与传统设备相比,通过自然生物吸收过程消失的传感器在这方面具有优势,因为省去了与检索相关的成本和风险。本文介绍了一类生物可吸收压力传感器,该传感器的工作寿命长达数周,物理寿命短至数月,这些综合指标代表了其对最近报道的替代方案的改进。关键进展包括:1) 使用单晶硅膜和天然蜡材料混合物分别将设备封装在其顶面和周边区域;2) 使用机械结构在封装材料溶解和消失时实现稳定运行;3) 使用附加传感器来检测生物流体是否开始渗透到主动传感区域。涉及在长达 3 周的时间内监测大鼠模型颅内压的研究显示,其性能水平与不可吸收的临床标准相当。本文报告的许多概念可广泛适用于其他类别的生物可吸收技术。
电子邮件:opsawiitm@gmail.com 1 ,jmmallik@iitm.ac.in 2 摘要:在分层条件下运行的汽油直喷(GDI)发动机中的混合气制备在决定发动机的燃烧,性能和排放特性方面起着重要作用。在壁面引导GDI发动机中,采用延迟燃油喷射策略,活塞顶面设计成使得喷射的燃油在点火时直接朝向火花塞形成可燃混合物。此外,在这些发动机中,火花塞和燃油喷射器的位置,燃油喷射压力和正时对于在火花塞附近形成可燃混合物也很重要。因此,了解火花塞和燃油喷射器位置影响下的混合物形成对于优化发动机参数非常重要。本研究尝试使用计算流体力学 (CFD) 分析来了解火花塞和燃油喷射器位置对分层条件下运行的四冲程、四气门和壁面导向 GDI 发动机混合气制备的影响。所有 CFD 模拟均在发动机转速为 2000 转/分、压缩比为 10.6、总当量比 (ER) 约为 0.65 的情况下进行。燃油喷射和火花正时分别保持在 605 和 710 CAD。最后得出结论,中央火花塞和侧面燃油喷射器的组合可实现更好的燃烧和性能。
研究发现,通过激光粉末床熔化增材制造 (LPBF) 熔化 316 L 不锈钢后,从熔池中喷出的飞溅颗粒具有在雾化 316 L 粉末中未观察到的形貌。该飞溅由大球形颗粒、高度树枝状的表面、带有吸积液体盖子的颗粒以及在凝固前由液带固定在一起的多个单个颗粒的聚集体组成。本研究的重点是另一种独特的飞溅形貌,它由较大的球形颗粒组成,其表面氧化斑点表现出广泛的表面结构分布,包括有组织的图案。使用多种成像技术对具有有组织的表面氧化物图案的飞溅颗粒的表面和内部颗粒特征进行了表征。观察结果如下:1)斑点位于飞溅颗粒表面,未明显渗透到内部,2)斑点为非晶态,富含硅(Si)-锰(Mn)-氧(O),3)颗粒和斑点之间存在两部分富含铬(Cr)-O的层,4)斑点的顶面存在富含Cr-O的形态特征,5)飞溅颗粒的成分与316L一致,但远离斑点处飞溅颗粒中的Si含量似乎有所降低,6)飞溅颗粒内部存在小的富Si球形颗粒。
摘要 为了将利用电子束光刻技术制作的抗蚀剂图案应用于纳米压印模具,不仅需要考虑从曝光顶面二维观察到的线宽和孔径,还需要考虑包括抗蚀剂横截面形状在内的三维情况。在本研究中,我们关注图案内部的剂量分布和显影时间,并研究它们对抗蚀剂横截面形状的影响。采用曝光方法制作线宽为 100nm 的抗蚀剂图案,其中一条线内的总剂量相同,但一条线内的电子束扫描位置和次数会发生变化。通过电子散射模拟分析的剂量分布与解析后的图案侧壁形状之间的比较结果表明,在特定条件下,剂量分布和实际的抗蚀剂形状在 ±5nm 精度内相互一致。结果表明,即使整个图案的平均剂量相同,抗蚀剂侧壁的实际形状也会因取决于扫描位置和扫描次数的抗蚀剂中的局部剂量分布而改变。此外,我们通过观察不同显影时间下曝光后的抗蚀剂的显影过程,研究了抗蚀剂的分辨机理。结果表明,图案内部剂量的差异引起的显影速度差异对抗蚀剂的截面形状产生影响。本研究结果表明,抗蚀剂内部剂量分布和由此引起的显影速度差异对抗蚀剂截面形状有显著影响,这些参数有望在未来应用于所需截面形状的制作。