摘要。NTS-KEM 是 NIST 仍在争取标准化的 17 种后量子公钥加密 (PKE) 和密钥建立方案之一。它是一种基于代码的密码系统,从 (弱安全的) McEliece 和 Niederreiter PKE 方案的组合开始,并应用 Fujisaki-Okamoto (Journal of Cryptology 2013) 或 Dent (IMACC 2003) 变换的变体,在经典随机预言模型 (ROM) 中构建 IND-CCA 安全密钥封装机制 (KEM)。Hofheinz 等人 (TCC 2017)、Jiang 等人 (Crypto 2018) 和 Saito 等人 (Eurocrypt 2018) 也证明了这种通用 KEM 变换在量子 ROM (QROM) 中是安全的。但是,NTS-KEM 规范有一些特殊性,这意味着这些安全证明并不直接适用于它。本文确定了经典 ROM 中 NTS-KEM 的 IND-CCA 安全证明中的一个细微问题,如其初始 NIST 第二轮提交中所述,并对其规范提出了一些细微修改,不仅解决了这个问题,而且使其在 QROM 中具有 IND-CCA 安全性。我们使用 Jiang 等人(Crypto 2018)和 Saito 等人(Eurocrypt 2018)的技术为修改后的 NTS-KEM 版本建立了 IND-CCA 安全性降低,实现了 2 度紧密度损失;人们认为,这种类型的二次损失对于 QROM 中的减少通常是不可避免的(Jiang 等人,ePrint 2019/494)。根据我们的研究结果,NTS-KEM 团队接受了我们提出的更改,并将它们纳入到他们向 NIST 流程提交的第二轮更新中。
1.9 研究结构…………...……………………………………………………19 1.10 结论……………………..……….…………………………………………... 20 第二章:五旬节运动的起源和津巴布韦新五旬节基督教的出现…………………………………………………………….. 21 2.0 简介………….…………………………………………...…………………………21 2.1 世界上五旬节运动的起源…………………………………………………….22 2.2 使徒运动 …………………………………………………………………... 24 2.2.1 威廉·约瑟夫·西摩(1870-1922)和 1906 年阿苏萨街复兴运动 ….……... 26 2.3 南非的五旬节运动 ………………………………………………………...29 2.4 津巴布韦的五旬节运动 ………......………………………………..…………………..34 2.4.1 津巴布韦其他五旬节教会的诞生 …………...……………………….38 2.4.2 津巴布韦的第二波五旬节运动 ……………………………………….40 2.4.3 津巴布韦第三波五旬节运动 ………………………………………….43 2.5 联合家庭国际教会和先知伊曼纽尔·马坎迪瓦 ……… 44 2.5.1 先知伊曼纽尔·马坎迪瓦和 UFIC 的成立 ……………………….45 2.6 结论 …………………………………………………………………………….51 第 3 章:津巴布韦的宗教与政治 …………………………………………….. 52 3.0 简介 ………………………………………………………………………….. 52 3.1 宗教与政治:它是什么?…………………………………………………………... 53 3.1.a 宗教:概况 ………………………………………………………………………56 3.1.b 政治:概况 ………………………………………………………………………54 3.2 津巴布韦的宗教 …………………………………………………………………60 3.2.1 津巴布韦的宗教难题 ………………………………………………...62 3.3 2000-2008 年津巴布韦的政治背景 ………………………………..65 3.3.1 2008-2012 年津巴布韦的政治背景 ………………………………75 3.4 2000-2008 年津巴布韦的社会经济背景 ……………...79
摘要:后量子安全性密码方案假设量子对手仅收到使用密钥进行计算的经典结果。此外,如果对手可以获得结果的叠加态,则后量子安全方案是否仍然安全尚不清楚。在本文中,我们形式化了一类公钥加密方案,称为 oracle-masked 方案。然后我们为这些方案定义了明文提取程序,该程序模拟了具有一定损失的量子可访问解密 oracle。明文提取程序的构造不需要将密钥作为输入。基于此属性,我们证明了量子随机 oracle 模型 (QROM) 中 Fujisaki-Okamoto (FO) 变换的 IND-qCCA 安全性,并且我们的安全性证明比 Zhandry (Crypto 2019) 给出的证明更严格。我们还给出了 QROM 中 REACT 变换的第一个 IND-qCCA 安全性证明。此外,我们的形式化可以用于证明具有明确拒绝的密钥封装机制的 IND-qCCA 安全性。作为示例,我们在 QROM 中给出了 Huguenin-Dumittan 和 Vaudenay (Eurocrypt 2022) 提出的 T CH 变换的 IND-qCCA 安全性证明。
量子信息通常比经典信息具有更丰富的结构,至少直观上是如此。第一个(但通常是错误的)想法是相位和幅度是连续的,并且量子信息可能能够存储比经典信息多出指数或无限多的信息;但这始终不正确 1 。由于经典信息和量子信息具有截然不同的性质,学界在不同背景和方向研究它们之间的区别,包括建议辅助量子计算[NY04、Aar05、Aar07、AD14、NABT14、HXY19、CLQ19、CGLQ20、GLLZ21、Liu22]、QMA 与 QCMA(即具有量子或经典见证的量子 NP)[AN02、AK07、FK18、NN22]、量子与经典通信复杂性[Yao93、BCW98、Raz99、AST + 03、BYJK04、Gav08] 等等。理解它们之间差异的一种方法是研究单向通信复杂度:即 Alice 和 Bob 想要用他们的私有输入联合计算一个函数,但 Alice 和 Bob 之间只允许进行一次量子/经典通信。在众多研究中,Bar-Yossef、Jayram 和 Kerenidis [ BYJK04 ] 展示了量子和经典单向通信复杂度之间的指数分离,即所谓的隐藏匹配问题。另一种方法是研究 QMA 与 QCMA 。2007 年,Aaronson 和 Kuperberg [ AK07 ] 展示了关于黑盒量子幺正的黑盒分离,而关于经典预言机的相同分离仍是一个悬而未决的问题。十多年后,Fefferman 和 Kimmel [ FK18 ] 使用分布式就地证明了第二种黑盒分离
摘要温带和规范的裂解噬菌体在葡萄球菌的生物学中具有至关重要的作用。虽然密切相关的温带噬菌体之间的超级感染排除是一种良好的现象,但尚不清楚葡萄球菌中温带和裂解噬菌体之间的相互作用。在这里,我们提出了一种朝向kayvirus属的裂解噬菌体的抗性机制,由膜锚定的蛋白质指定的PDP SAU介导,由金黄色葡萄球菌预言编码,主要是SA2整合酶类型。预言辅助基因PDP SAU与霍林和AMI2型胺酶的裂解基因密切相关,通常取代毒素Panton-valentine白细胞素(PVL)的基因。预测的PDP SAU蛋白结构显示了其N末端部分中存在膜结合的A-螺旋和细胞质正电荷C末端。我们表明,PDP SAU的作用机理并不能阻止感染Kayvirus吸附到宿主细胞上并将其基因组传递到细胞中,但噬菌体DNA复制已停止。从感染后10分钟开始观察到细胞膜极性的变化和渗透率,从而导致预言激活的细胞死亡。此外,我们描述了一种在宿主范围的kayvirus突变体中克服这种抗性的机制,该抗病毒突变体是在带有预言的金黄色葡萄球菌菌株上选择的53个编码PDP SAU的菌株,其中嵌合基因产物通过适应性实验室进化而出现。这是葡萄球菌间噬菌体 - 噬菌体竞争的第一种情况类似于其他一些流产感染防御系统和基于膜破坏性蛋白的系统。
在这里,我们看到了“耶稣预言的另一个关键维度,它帮助我们了解耶稣预言的深度。耶稣谈论的是圣殿的毁灭,但耶稣自己就是圣殿。因此,耶稣对圣殿的预言预示着他自己的被捕、受难和死亡。耶稣预言犹太人会把使徒们交给法庭 (13:9);但耶稣首先被交给法庭 (14:53ff)。耶稣预言使徒们将“在会堂里被鞭打”(13:9),但耶稣首先被鞭打 (15:5)。耶稣警告说,他们将站在总督和国王面前作证 (13:9),但耶稣首先站在总督彼拉多和希律王面前。耶稣告诉使徒们,当他们逃离城市时,要把斗篷留在身后(13:16);在客西马尼,一个年轻人没有带斗篷就逃跑了(14:51-52)。耶稣预言他的门徒将遭受苦难,他自己也遭受了苦难、悲伤和痛苦。” 1
在本文中,我们探索了受拟阵理论启发的量子加速问题,即使用最大内积预言机和子集预言机来识别一对 n 位二进制字符串,保证它们具有相同数量的 1,并且恰好有两位不同。更具体地说,给定两个满足上述约束的字符串 s,s ′ ∈{0, 1} n,对于任何 x ∈{0, 1} n,最大内积预言机 O max (x) 返回 s·x 和 s ′·x 之间的最大值,子集预言机 O sub (x) 指示 x 中 1 的索引集是否是 s 或 s ′ 中索引集的子集。我们提出了一个量子算法,该算法消耗 O (1) 次查询来获取最大内积预言机,用于识别对 { s, s ′ } ,并证明任何经典算法都需要 Ω( n/ log 2 n ) 次查询。此外,我们提出了一个量子算法,该算法消耗 n
被称为噬菌体的细菌病毒依靠其宿主进行复制,因此在进化时期建立了亲密的伙伴关系。温带噬菌体的表面可以建立一种慢性感染,其中其基因组保持在被称为预言的静止状态下,与细菌宿主的存活紧密结合。因此,预言编码了一种多样化的反舞蹈防御武器库,以保护它们和它们的细菌宿主,使它们免受进一步的噬菌体感染。同样,与预言相关元件(例如噬菌体诱导的染色体岛屿)的生存和成功直接与细菌宿主的表面和成功息息相关,并且还显示它们编码了许多反舞蹈防御。在这里,我们描述了由预言和与预言有关的移动遗传元素编码的反义辩护的当前知识。
■ 图灵机 ■ 量化计算资源 ■ 复杂性类别 ■ 量子计算简介:历史视角 ■ 量子计算模型 ■ 电路符号和量子门 ■ 量子门的通用集 ■ Solovay-Kitaev 定理 ○ 量子预言机 ○ 预言量子算法:
摘要金黄色葡萄球菌菌株与特应性皮炎(AD)表现出不同的关联,但是基于致病性的遗传决定因素尚未充分表征。为了揭示AD患者和健康个体(HE)的金黄色葡萄球菌菌株之间的遗传差异,我们开发并采用了随机的森林分类器来识别负责其表型变异的潜在标记基因。分类器能够有效地将菌株与AD和HE区分开。我们还发现了某些标记基因和噬菌体功能之间的牢固联系,噬菌体霍林出现为最关键的分化因子。对金黄色葡萄球菌基因含量的进一步研究强调了预言在推动与AD菌株之间分化的遗传多样性和功能意义。HE组表现出更大的基因含量多样性,在很大程度上受其预言的影响。虽然AD和他普遍容纳预言的菌株,但HE组中的菌株在应变水平上却明显更高。此外,尽管HE组中的预言表现出更高的差异功能的富集,但AD组在其预言中表现出显着的毒力因子的富集,强调了预言对AD相关菌株的发病机理的重要贡献。总体而言,预言显着塑造了金黄色葡萄球菌菌株的遗传和功能谱,阐明了其致病潜力,并阐明了AD和HE环境的表型变化背后的机制。