碳材料显示出有趣的物理特性,包括在石墨烯中发现的超导性和高度各向异性的热导率。压缩应变可以在碳材料中诱导结构和键合跃迁并创建新的碳相,但是它们与导热率的相互作用仍然在很大程度上没有探索。我们使用Picsecond瞬时热室内和第一原理计算研究了压缩石墨阶段的原位高压导热率。我们的结果表明,在15 - 20 GPA时峰值至260 W = MK峰值,但降至3。0 W = 〜35 GPA的MK。与免费的原位拉曼和X射线衍射结果一起,压缩碳的异常热导率趋势归因于声子介导的电导率,受层间屈曲和SP 2的影响,SP 2转换为SP 3过渡,然后,M-Carbon Nanocrystals和Nananocrystals和Nananocrystals和Amorphous Carbos的形成。应变诱导的结构和键合变化提供了碳材料中热和机械性能的广泛操作。
https://doi.org/10.26434/chemrxiv-2023-hc8jv-v3 orcid:https://orcid.org/0000-0000-0001-7981-5162不通过chemrxiv peer-review dectect content。 许可证:CC由4.0https://doi.org/10.26434/chemrxiv-2023-hc8jv-v3 orcid:https://orcid.org/0000-0000-0001-7981-5162不通过chemrxiv peer-review dectect content。许可证:CC由4.0
在 IV 族单硫族化物中,层状 GeSe 因其各向异性、1.3 eV 直接带隙、铁电性、高迁移率和出色的环境稳定性而备受关注。电子、光电子和光伏应用依赖于合成方法的开发,这些方法可以产生大量具有可控尺寸和厚度的晶体薄片。在这里,我们展示了在低热预算下,在不同基底上通过金催化剂通过气相-液相-固相工艺生长单晶 GeSe 纳米带。纳米带结晶为层状结构,带轴沿着范德华层的扶手椅方向。纳米带的形态由催化剂驱动的快速纵向生长决定,同时通过边缘特定结合到基面而进行横向扩展。这种组合生长机制能够实现温度控制的纳米带,其典型宽度高达 30 μm,长度超过 100 μm,同时保持厚度低于 50 nm。单个 GeSe 纳米带的纳米级阴极发光光谱表明,在室温下具有强烈的温度依赖性带边发射,其基本带隙和温度系数分别为 E g (0) = 1.29 eV 和 α = 3.0×10 -4 eV/K,证明了高质量 GeSe 和低浓度的非辐射复合中心,有望用于包括光发射器、光电探测器和太阳能电池在内的光电应用。
6.本次投标适用规范及投标资格的判定 本次投标适用规范及投标资格的判定将根据投标申请人提交的《合格证明书》和《特定电源配置方案》确定。决定结果将于1月15日前以书面形式(包括传真)发送给希望参加竞标的人。 (1)如果有实体满足第2(1)至(10)项中的所有必要资格,并能够以100%的可再生能源比例提交投标,则将采用“规范1(100%可再生能源比例)”,并允许该实体参加竞争。 (2)如无法满足第1款的要求,但有投标人符合第2款第(1)至(12)项的所有必要资格,且能够以可再生能源比例达到60%或以上的价格提交投标,则应采用“规范2(可再生能源比例60%)”,并允许该投标人参加竞争。 (3)如无法满足第2款的要求,但有投标人符合第2款第(1)至第(12)项的所有必要资格条件,且能够以30%或以上的可再生能源比例进行投标,则应采用“规范3(可再生能源比例为30%)”,并允许该投标人参加竞争。 (4)如无法满足第3款的要求,但有符合第2款第(1)至第2款第(12)项所有必要资格的人,则应采用“规范4(不附加可再生能源比例条件)”,不对可再生能源比例施加任何条件。
Parr, Thomas, Giovanni Pezzulo 和 Karl J. Friston [2022],主动推理:自由能
引用:Shaurya Mahajan。等。“与经颅光生物调节(TPBM)相连的个性化重复经颅磁刺激(PRTMS®),用于共发生的创伤性脑损伤(TBI)和创伤后应激障碍(TBI)和创伤后应激障碍(PTSD)”。ACTA科学神经病学8.3(2025):20-27。
背景:颅咽管瘤 (CP) 与关键神经血管结构的接近可导致一系列神经和内分泌并发症,从而给手术治疗带来困难。在本综述中,我们研究了与 CP 有关的分子和遗传标记、它们在致瘤途径中的参与以及它们对 CP 预后和治疗的影响。方法:我们对与 CP 有关的相关文章、临床试验和分子摘要进行了重点回顾。结果:遗传和免疫标记在不同类型的 CP 中表现出不同的表达。BRAF 与乳头状 CP (pCP) 的肿瘤发生有关,而 CTNNB1 和 EGFR 在釉质瘤性 CP (aCP) 中经常过度表达,VEGF 在 aCP 和复发性 CP 中过度表达。抑制这些途径的靶向治疗方式可以缩小或阻止 CP 的进展。此外,EGFR 抑制剂可能会使肿瘤对放射疗法敏感。这些药物在脑性瘫痪的医疗管理和新辅助治疗中显示出良好的前景。免疫疗法,包括抗白细胞介素 6 (IL-6) 药物和干扰素治疗,在控制肿瘤生长方面也非常有效。正在进行的脑性瘫痪临床试验有限,但正在测试 BRAF/MET 抑制剂和 IL-6 单克隆抗体。结论:遗传和免疫标记在脑性瘫痪的不同亚型中表现出不同的表达。目前几种分子疗法在治疗这种疾病方面取得了一些成功。额外的临床试验和靶向疗法对于改善脑性瘫痪患者的预后非常重要。
背景:当今医学成像和计算资源的可用性为脑生物力学的高保真计算建模奠定了基础。脑及其环境的特点是组织、血液、脑脊液 (CSF) 和间质液 (ISF) 之间存在动态而复杂的相互作用。在这里,我们设计了一个用于颅内动力学建模和模拟的计算平台,并根据脑脉动的临床相关指标评估模型的有效性。方法:我们开发了人类脑环境中完全耦合的心脏诱发的脉动性脑脊液流和组织运动的有限元模型。三维模型几何形状源自磁共振图像 (MRI),具有高水平的细节,包括脑组织、脑室系统和颅蛛网膜下腔 (SAS)。我们将器官尺度的脑实质建模为一种由细胞外液网络渗透的弹性介质,并将 SAS 和脑室中的脑脊液流动描述为粘性流体运动。分布在脑实质中的脉动净血流代表心动周期中的血管扩张,是运动的驱动因素。此外,我们还研究了模型变化对一组临床相关感兴趣量的影响。结果:我们的模型预测了脑脊液填充空间和多孔弹性实质在 ICP、脑脊液流量和实质位移方面的复杂相互作用。ICP 的变化主要由其时间幅度决定,但脑脊液填充空间和实质的空间变化都很小。受 ICP 差异的影响,我们发现脑室和颅脊脑脊液流量较大,颅 SAS 中有一些流量,脑实质中存在小的脉动 ISF 速度。此外,该模型预测在心动周期开始时,实质组织在背部方向会呈漏斗状变形。结论:我们的模型准确描述了颅内压、脑脊液流动和脑组织运动之间的复杂相互作用,与临床观察结果相符。它为详细研究生理和病理生理条件下颅内耦合动力学和相互作用提供了一个定性和定量平台。
就社会、经济和公共卫生影响而言,精神和认知障碍是我们面临的最具挑战性的疾病之一。这一挑战在很大程度上源于它们的异质性和复杂性——异质性在于这些疾病在个体间的表现差异很大,复杂性在于缺乏客观的生物标志物,对潜在的神经生理机制的理解有限。与精神和认知障碍有关的网络通常包括前额叶区域(1,2),这是进化最快的区域,在非人类动物中建模尤其具有挑战性(3)。为了治疗性地调节这些功能失调的回路,我们必须全面了解它们的病理生理学。鉴于非侵入性方式的分辨率和特异性相对较低,在人类中完成这一“回路解剖”任务的最精确工具是电生理记录和颅内电极刺激。在这里,我们应用这种方法来研究一种常见且负担沉重的疾病——抑郁症的神经生理学基础(4)。