颅骨插曲是重要的第一步。基于学习的细分模型(例如U-NET模型)在自动执行此细分任务时显示出令人鼓舞的结果。但是,当涉及到新生儿MRI数据时,在培训这些模型期间,没有任何可公开可用的大脑MRI数据集随着手动注释的segmentment口罩而被用作标签。大脑MR图像的手动分割是耗时,劳动力密集的,需要专业知识。此外,由于成人数据和新生儿数据之间的较大域移动,使用对成人脑MR图像进行训练的分割模型进行分割新生脑图像无效。因此,需要对新生儿大脑MRI的更有效,准确的颅骨剥离方法。在本文中,我们提出了一种无监督的方法,以适应经过成人MRI训练的U-NET颅骨剥离模型,以有效地在新生儿上工作。我们的资产证明了我们新颖的未加剧方法在提高分割准确性方面的有效性。我们提出的方法达到了总体骰子系数为0。916±0。032(平均值±STD),我们的消融研究巩固了我们提议的有效性。非常重要的是,我们的模型的性能与我们进行了综合的当前最新监督模型非常接近。所有代码均可在以下网址提供:https://github.com/abbasomidi77/daunet。这些发现表明,这种方法是一种有价值,更容易,更快的工具,用于支持医疗保健专业人员,以检查新生大脑的先生。
扩散张量成像(DTI)是磁共振成像(MRI)的高级方式,它扩展了扩散加权成像(DWI)的能力。DWI测量水扩散信号,DTI利用来自多个扩散方向的数据来绘制大脑中水分子的三维扩散,从而使其微观结构组织的评估。源自DTI的密钥指标包括分数各向异性(FA),它反映了白质微结构的完整性;平均扩散率(MD),这表明了总水扩散的大小,并且与细胞密度和细胞外空间有关。和径向扩散率(RD),代表垂直于轴突纤维的扩散,与髓磷脂状况相关[1]。dTI已应用于神经康复领域,研究报告了基于白质分析[2-4],其效用在预测中风和创伤性脑损伤后的运动和功能恢复方面。此外,DTI已用于调查神经退行性疾病的白质变化[5-7],并提供了一种定量方法来评估细微的微结构变化,而常规MRI很难检测到这些变化[8,9]。
头骨变异的胚胎学起源在于颅骨的复杂发育,颅骨主要由神经嵴细胞和中胚层组织产生。神经嵴细胞源自外胚层,在早期胚胎发育过程中迁移形成大部分面部骨骼,包括上颌骨、下颌骨和颧骨,以及部分神经颅骨。中胚层有助于枕骨和部分后颅骨的形成。随着头骨的发育,骨骼最初由缝线分开,以方便儿童时期的生长。当这些缝线过早闭合,扰乱正常的颅骨扩张时,就会出现颅骨形状的变化,如颅缝早闭。这可能导致颅骨形状异常,如舟状头畸形(长而窄的颅骨)或短头畸形(宽而短的颅骨)[6]。此外,神经嵴迁移和中胚层相互作用的时间和模式会影响个体颅面特征,导致个体之间的正常差异,包括眼眶、鼻腔和下颌的大小和形状差异。这一发育过程的中断,无论是遗传的还是环境的,都可能导致先天性异常,如唇腭裂,或导致性别二态性和头骨形态的种族差异。
内镜下辅助条颅骨切除术(也称为内窥镜辅助毛切除术)是一种用于颅骨突变性手术的新方法。与传统方法一样,神经外科医生和整形外科医生删除了闭合的缝合线 - 但与传统方法不同,内窥镜手术不包括手术期间的颅骨重塑。这种微创手术通常是针对四个月以下的婴儿进行的,因为它取决于脑生长极快,以帮助重新定位颅骨。内窥镜辅助舒道切除术通常在手术室需要更少的时间,并且需要较短的住院时间。内窥镜手术进行颅骨突变病后,孩子将戴颅骨头盔以帮助重塑头骨。有关更多信息,请访问suturontromy.org
颅内肿瘤是狗发病和死亡的一个重要原因,每 100,000 只动物的发病率为 14.5。1随着磁共振成像(MRI)的普及,认识到诊断的局限性非常重要,因为颅内病变可以具有相同的 MRI 信号特征和形态。2-4例如,Cervera 等人发现多达 47% 的脑血管事件被诊断为神经胶质瘤,12% 的组织学证实的神经胶质瘤被归类为中风。4 Rodenas 等人发现在 89% 患有原发性脑肿瘤的狗中可以区分肿瘤性病变和非肿瘤性病变,但只有 70% 的原发性脑肿瘤能够正确区分肿瘤类型。 2 由于每种颅内疾病的治疗方案和预后会因病因不同而有很大差异,因此获得组织病理学诊断对于患者和客户来说都是至关重要的一步。在人类中,脑活检通常通过立体定向手术进行。5 基于框架的立体定向脑活检 (SBB) 被认为是脑活检的黄金标准,6 它利用刚性的外部头架固定患者,并使用立体定向协调系统获取样本。基于框架的 SBB 已在狗身上进行了研究,并得到有效利用,其精度和诊断产量可与人类研究相媲美。7-9 然而,据报道,人体存在一些局限性,例如灵活性和患者不适,这表明需要采用不同的方法,包括采用机器人辅助或图像引导的神经导航的无框架技术。6,10 立体定向设备在兽医学中的使用进一步受到商用设备的可用性和患者体型范围广泛的限制。进一步研究替代性脑活检方法和立体定向设备可以促进对狗脑损伤的诊断,一种潜在的替代方案是针对特定患者的 3D 打印活检指南。针对特定患者的 3D 打印模型和手术指南已在兽医学中用于各种目的,并取得了巨大成功。11-18 还有两项犬类尸体研究测试了 3D 打印患者特定立体定向系统的可行性,但需要在 MRI 之前放置钛骨锚和基准标记以规划 3D 指南。19,20
背景:减压开颅术是治疗难治性颅内高压的一种救命疗法。对于存活的患者,需要进行第二次颅骨重建手术(颅骨成形术)。颅骨成形术对颅内压 (ICP) 的影响尚不清楚。目的:将最近获得美国食品药品监督管理局批准的完全植入式无创 ICP 传感器集成到定制颅骨植入物 (CCI) 中,用于对颅内高压高风险患者进行术后监测。方法:一名 16 岁女性因颅脑枪伤接受减压开颅术 4 个月后接受颅骨成形术。由于持续性颅疝并伴有硬膜下积液,颅骨成形术后颅内高压值得关注。因此,利用带有集成无线 ICP 传感器的 CCI 进行颅骨重建,并进行无创术后监测。结果:使用无线手持式监测器每天两次获得间歇性 ICP 测量值。仰卧位时 ICP 范围为 2 至 10 mmHg,坐位时 ICP 范围为 -5 至 4 mmHg。有趣的是,坐位和仰卧测量值之间始终存在平均 7 mmHg 的差异。结论:这项首次在人体上使用的经验表明了几项值得注意的发现,包括 (1) 在 CCI 中集成无线 ICP 传感器进行围手术期神经监测的全新安全性和有效性;(2) 尽管术前颅疝严重,但颅骨修补术后 ICP 恢复正常;(3) 颅骨修补术后体位 ICP 适应性恢复。据我们所知,这是第一个展示这些有趣发现的案例,它有可能从根本上改变颅骨重建的范式。
摘要。颅骨突变是指一个或多个颅骨缝合线的早期融合,导致全球1:2,500个出生的颅面异常。在大多数情况下(85%),颅骨突变为零星异常(非综合征颅骨突出),而在其他情况下(15%)作为综合征(综合征颅骨症)。综合症患者与具有单缝线冲突的患者通常具有更严重的症状。 颅突的最常见综合症包括Pfeiffer,Apert,Crouzon,Jackson-Weiss,Muenke和Boston Type MSX2相关综合征。 颅突的主要基因突变涉及FGFR1,FGFR2,FGFR3,Twist1和MSX2,该基因编码影响颅骨形态发生的关键因素。 正如本综述所讨论的那样,主要的治疗方法是手术,并且治疗的类型取决于事件的重力。综合症患者与具有单缝线冲突的患者通常具有更严重的症状。颅突的最常见综合症包括Pfeiffer,Apert,Crouzon,Jackson-Weiss,Muenke和Boston Type MSX2相关综合征。颅突的主要基因突变涉及FGFR1,FGFR2,FGFR3,Twist1和MSX2,该基因编码影响颅骨形态发生的关键因素。正如本综述所讨论的那样,主要的治疗方法是手术,并且治疗的类型取决于事件的重力。
摘要。术中脑移位是一种众所周知的现象,它描述了由于重力和脑脊液的丧失而在其他现象中描述了脑组织的非刚性变形。这对手术结果具有负面影响,这通常是基于不考虑大脑转移的术前计划。我们提出了一种新型的大脑意识到的增强现实方法,将术前3D数据与通过手术显微镜观察的变形大脑表面相结合。我们将非刚性登记作为形状结构化问题提出。术前3D线状可变形模型被注册到皮质容器的Single 2D图像上,该模型自动分割。此3D/2D登记驱动肿瘤等潜在的大脑结构,并弥补了亚皮质区域的大脑转移。我们评估了由6名材料组成的模拟和真实数据的方法。它实现了良好的定量和定性结果,使其适合神经外科指导。
图 2 | 运动任务的 fPACT 和 7 T fMRI 结果。对右侧 FT(a:fMRI,b:左半球无颅骨 fPACT)、左侧 FT(c:fMRI,d:右半球颅骨完整 fPACT)和 TT(e:fMRI — 左图显示大脑左侧,f:左半球无颅骨 fPACT,g:fMRI — 左图显示大脑右侧,h:右半球颅骨完整 fPACT)的功能反应进行了成像。皮质上显示的功能反应(左栏)代表反应的最大振幅投影。功能反应也显示在通过激活的轴向(中间栏)和冠状(右栏)切片上。对于 FT(ad),我们选择相同的轴向和冠状切片显示在所有四张图像中。对于左侧无颅骨侧的 TT(e、f),我们选择彼此相距 5 毫米以内的切片。对于右侧颅骨完整侧的 TT(g、h),我们选择相同的轴向和冠状切片。但这些激活在空间上并不重叠。在每个功能图中,我们显示了以最大 t 值(𝑡𝑚𝑎𝑥)的 70% 为阈值的区域,这些区域列为每个皮质图下方的第一个值。皮质图下方显示了对应于最大 t 值的 70% 的 p 值(一元学生 t 检验)。白色箭头表示 fPACT 中的激活区域。比例尺:2 厘米。