测量最佳实践指南 No.119 确定球形纳米颗粒样品尺寸和尺寸分布的最佳实践指南 Robert D. Boyd 博士和 Alexandre Cuenat 博士 英国泰丁顿国家物理实验室 (NPL) Felix Meli 博士 瑞士联邦计量局 (METAS) Tobias Klein 和 Carl Georg Frase 博士 德国不伦瑞克联邦物理技术研究院 (PTB) Gudrun Gleber 和 Michael Krumrey 博士 德国柏林联邦物理技术研究院 (PTB) Alexandru Duta 博士和 Steluta Duta 博士 罗马尼亚布加勒斯特国家计量研究院 (INM) Richard Hogstrom 博士 芬兰埃斯波计量和认证中心 (MIKES) Emilio Prieto 博士 西班牙马德里西班牙计量中心 (CEM) 摘要 本指南的目的旨在向读者介绍纳米颗粒尺寸测量中的一些关键计量方面。强调了可追溯性和不确定性分析在获得有意义的测量结果方面的关键作用。回顾了纳米材料分析中常用的几种常见技术,并为每种技术给出了不确定性计算的示例。这些技术是电子和扫描探针显微镜的高分辨率技术,可以分辨单个粒子,以及动态光散射和小角度X射线散射的集合方法,可以同时分析数千个粒子。还提供了现有相关标准的列表。
这项研究的目的是制定含纳米颗粒的局部凝胶,用于糖尿病足溃疡(DFU)。在这方面,使用自发乳化技术制备纳米颗粒制剂。lineZolid(LZD)负载的纳米颗粒配方表现出较低的平均颗粒尺寸(PS)为195.27±5.42 nm,低散射指数(PI)为0.214±0.019,高Zeta势率(ZP)高Zeta电位(ZP),为20.57±0.35 mV和高毒药效率(99.09)。为了提高局部停留时间,使用甲基TM K4M(HPMC)和Carbopol®974P NF将LZD负载的纳米颗粒分散在凝胶配方中。配制的凝胶表现出有利的特性,包括适当的pH值,适当的机械性能以及理想的粘度和局部应用的可传播性。所有配方均显示了指定频率值的假塑性流和典型的凝胶型机械光谱。Moreover, the developed formulation achieved sustained drug release as intended for these systems.During ex vivo drug diffusion studies, 0.007±0.004% of LZD was found in receptor phase, indicating a local effect.The optimum formulation was stable for six months.最初的发现表明,配制的含有LZD的纳米颗粒的局部凝胶具有有效的DFU管理药物输送系统。However, further comprehensive investigations are required to substantiate this hypothesis.
本研究旨在强调基于将安全的,pyrolectric纳米颗粒掺入纤维的新世代功能纺织品材料的适用性。具有负离子发射特性的合成纤维含有半颗粒的石材颗粒(电气石,独居石,蛋白石),陶瓷,木炭,锆粉,硫硫酸盐,钛酸盐和此类矿物质的混合物。目前,通过引入矿物质获得产生pyroelectric效应的合成纤维(例如超精美的电气石粉)在旋转或通过将矿物分散到旋转溶液中之前融化聚合物。作为聚合物,聚乙烯三乙酸酯,乙酸聚氯乙烯,聚酰胺和粘胶均已使用。在低量中,这些矿物质几乎对人类健康没有影响。大量包含,它们往往太贵了(电气石,蛋白石),纤维变得苛刻而脆弱。当前的FIR功能纺织品材料面临一系列技术挑战:某些使用的化合物是放射性的(单济族);如果颗粒尺寸太大(0.2-0.3µm),则可能导致产生高度不均匀的纤维,并早期磨损机械零件的安装;大多数商业pyroelectric织物都散发出低量的负离子(500-2600阴离子/cc)和FI射线,从而诱导低健康效应。涉及暴露于地球化合物的临床研究突出了对:血液循环,皮肤细胞再生,胶原蛋白和弹性蛋白的产生,睡眠调节,伤口的愈合和微循环的愈合和加速度的加速,慢性疼痛管理,慢性疼痛管理,血管内皮功能的改善,动脉粥样硬化的影响,动脉粥样硬化等<<<<
简介:元素丰度在陨石的组成矿物之间会进行分馏,即使是化学性质非常相似的稀土元素 (REE) 也是如此。先前的研究表明,亲石元素,特别是难熔亲石元素,在其母体的热变质过程中从原生相重新分布到次生相 [1-3]。然而,由于矿物颗粒尺寸相对较小(< 50 μm)且矿物中夹杂物(< 10 μm),因此,对于在母体中经历了水蚀变的碳质球粒陨石 (CC),这种重新动员(包括它们的元素分布,尤其是微量元素)的了解甚少 [4]。因此,我们开发了使用激光剥蚀电感耦合等离子体飞行时间质谱 (LA-ICP-TOF-MS) 进行定量元素映射的分析方法,不仅可以提供主要元素图,还可以提供具有大表面积 (cm × cm)、高空间分辨率 (5×5 μm/像素) 的微量元素图,并且对后续分析的表面影响可以忽略不计 [5]。这种元素映射已被证明是一种确定 H 球粒陨石中元素分布的有效工具,然后应该适用于由带有包裹体的小矿物颗粒组成的 CC。因此,在本研究中,我们旨在将 LA-ICP-TOF-MS 映射应用于 CM 球粒陨石 (CM),这是最丰富的 CC,显示出从几乎 3 型到 1 型的各种变质程度,以确定 (i) 组成矿物中的元素丰度,(ii) 最富含特定元素的相,以及 (iii) 组成矿物之间的元素分布,这可能揭示母体水蚀变过程中元素的重新动员,并有助于限制水蚀变的物理化学条件。
在溶剂热条件下,使用 SnCl 4 和 LiNH 2 前体,开发了一种合成尖晶石结构 Sn 3 N 4 的简单且可扩展的新方法。生产了晶粒尺寸 <10 nm 的纳米晶体 Sn 3 N 4,并作为钠半电池的阳极材料进行了测试,结果表明,在 50 次循环中测得的可逆(脱钠)容量非常高,约为 850 mA hg -1,这是除钠本身之外的钠阳极的最高可逆容量。原位 X 射线吸收光谱和 X 射线衍射表明,电化学反应是可逆的,并且 Sn 3 N 4 在重新氧化后会恢复。X 射线衍射表明,与 Sn 3 N 4 反射相关的峰在放电(还原)过程中变窄,证明较小的 Sn 3 N 4 颗粒主要参与电化学反应,并且峰的加宽在氧化后可以可逆地恢复。近边 X 射线吸收数据 (XANES) 分析表明,Sn 的氧化态在还原过程中降低,在氧化过程中几乎恢复到初始值。DFT 计算表明,Na 插入 Sn3N4 表面,然后用 Na 取代四面体 Sn 在能量上是有利的,而从还原电极的扩展 X 射线吸收精细结构 (EXAFS) 测量分析中获得了四面体 Sn 从尖晶石 Sn3N4 结构中去除的证据,这也表明氧化结束时恢复了原始结构。DFT 还表明,Na 取代 Sn 仅在 Sn3N4 表面有利(对块状 Sn3N4 不起作用),这与电化学表征一致,即控制纳米颗粒尺寸对于充分利用 Sn3N4(从而实现高容量)至关重要。
摘要:本研究旨在增强农业副产品的增值,以通过溶液铸造技术生产复合材料。众所周知,PLA对水分敏感并在高温下变形,这限制了其在某些应用中的使用。与植物基纤维混合时,弱点是较差的填充 - 马trix界面。因此,通过乙酰化和碱处理在大麻和亚麻纤维上进行表面修饰。将纤维铣削以获得两种颗粒尺寸<75 µm和149–210 µm,并在不同的载荷(0、2.5%,5%,10%,20%和30%)下与聚(乳酸)酸混合,形成复合膜以形成薄膜这些膜的谱图,物理和机械性质。所有薄膜标本都显示出C – O/O – H组,未处理的亚麻填充剂中的π–π相互作用在膜中显示出木质素酚环。注意到,最大降解温度发生在362.5°C。未经处理,碱处理的最高WVP和乙酰化处理的复合材料为20×10 - 7 g·m/m 2 Pa·S(PLA/HEMP30分别为7 g·m/m 2 Pa·S(PLA/HEMP30)。与纯PLA相比,增加填充含量会增加复合膜的色差。碱处理的PLA/亚麻复合材料在2.5或5%的填充物载荷下,其拉伸强度,伸长率和Young的模量显示出显着改善。增加填充物的增加导致吸收的水分显着增加,而水接触角则随着填料浓度的增加而降低。亚麻和大麻诱导的基于PLA的复合膜,载荷为5 wt。载荷显示出更稳定的所有检查特性,并有望提供具有令人满意的性能的独特工业应用。
1里加技术大学,材料科学和应用化学学院,通用化学工程研究所,鲁道夫斯Cimdins Cimdins Riga Riga Biomaterials Innovations Innovations Innovations Innovations Innovations and Development Center,Pulka Street 3,LV-1007 LATVIA,拉脱维亚2号Riga 2工程,粉末材料科学实验室和航空学研究所,吉帕拉斯街6B,LV-1048拉特维亚,拉特维亚4里加技术大学,里加技术大学,通用化学工程研究所,里加技术大学,3/7 PaulaValdena Street,LV-1048 Riga,Latvia,Latvia,Latvia *通信:Kristine.irtise.irtise.irtise.irtiseva@ristise@recter:sterce@recties@rectection extriuse@recter:sterce extriuseva@rection@rection extry:1.23 31 stun.lv ster,1月31日。接受:2023年11月17日;出版:2024年5月13日摘要。对天然起源的吸附剂越来越兴趣,这些吸附剂可再生,有效且能够治疗被石油产品污染的水。目前的论文调查了一种新型的基于生物的“泥炭 - 花费的咖啡地” SCG-HP Bio-base Composite Pellets,作为溢出油产品的透视吸附剂。描述了SCG-HP基于沉淀形式的基于SCG-HP的复合材料的制备和表征。这项研究使用同质泥炭(HP)作为一种有效的天然粘合剂。与HP不同比例(从12 wt%到50 wt%)的SCG用于不同类型的SCG-HP肉芽吸附剂。获得的颗粒尺寸为2至6 mm,总孔隙率为56-61%。研究了测试油的吸附(新鲜机油飞行员10W-40 SJ/CF)。吸附研究显示,SCG-HP颗粒的最大吸附(容量)从90 wt%到125 wt%。关键词:花费的咖啡地,吸附,基于泥炭生物的复合材料,漏油,可持续生产,废物回收。
本期特刊旨在汇集高质量的论文,重点介绍各种可充电电池材料的最新发展,并重点介绍当今最重要和最有效的储能设备之一的科学和技术,即锂离子、锂硫、锂空气和钠离子电池。高性能电池技术被认为是通过大规模应用于电动汽车实现深度脱碳的关键因素。此外,通过大量关注推广可持续和可再生能源,可持续经济发展是可能的。这些间歇性能源系统的开发需要适当的储能方法,其中电池作为多功能储能设备发挥着重要作用。这些贡献提供了对一系列材料(电池的基本元素)的深入了解,其方法可以从纳米到宏观。在这些电池中,不仅阴极和阳极材料,而且其他组件(如电解质、添加剂和隔膜)在确定其能量密度、寿命、功率能力、安全性和成本方面也起着至关重要的作用。通过引入源于特殊形貌和结构、适宜的颗粒尺寸、表面工程、掺杂和复合形成等各种功能来设计和合成材料以获得稳定的电化学性能,人们对此给予了特别的关注。因此,对电池材料的广泛研究在生产未来可持续发展的先进可充电电池中发挥着越来越重要的作用。元素掺杂取代锂或氧位已成为提高层状正极材料电化学性能的一种简单有效的技术。与单一元素掺杂相比,Wang 等 [1] 在研究 Na + /F − 阳离子/阳极共掺杂对 LiNi 1/3 Mn 1/3 Co 1/3 O 2 的结构和电化学性能的影响方面做出了前所未有的贡献。三维和二维势图的第一性原理计算表明,Na 掺杂可以降低势阱并增加 Li + 离子的去除速率 [2]。采用溶胶-凝胶法,以乙二胺四乙酸 (EDTA) 为螯合剂,合成了共掺杂的 Li 1-z Na z Ni 1/3 Mn 1/3 Co 1/3 O 2-z F z (z = 0.025) 和纯 LiNi 1/3 Co 1/3 Mn 1/3 O 2 材料。结构分析表明,Na + 和 F − 掺杂剂分别成功掺入 Li 和 O 位。共掺杂使 Li 板间距更大、阳离子混合程度更低、表面结构更稳定,从而大大提高了正极材料的循环稳定性和倍率性能。Na/F 共掺杂电极在 1C 倍率下提供 142 mAh g −1 的初始比容量(0.1C 时为 178 mAh g −1),并且在 1C 倍率下经过 1000 次充电-放电循环后仍能保持其初始容量的 50%。Bubulinca 等人 [3] 对采用优化的无粘合剂技术制备的二元和三元自立复合正极材料进行了比较研究。使用聚(乙二醇)对异辛基苯基醚(Triton X-100)作为表面活性剂,制备了二元“岛桥”LiMn2O4/碳纳米管(LMO/CNT)复合材料和三元“构造板-岛桥”LiMn2O4/CNTs/石墨烯仿生结构。在