摘要 拓扑量子纠错码已成为实现大规模容错量子计算机目标的主要候选者。然而,在存在噪声的情况下量化这些大尺寸系统中的纠缠是一项艰巨的任务。在本文中,我们提供了两种不同的方法,以可定位的量子比特子集纠缠来表征噪声稳定器状态,包括表面和颜色代码。在一种方法中,我们利用适当构造的纠缠见证算子来估计基于见证的可定位纠缠下限,这可以在实验中直接获得。在另一种方法中,我们使用与稳定器状态局部幺正等价的图状态来确定可计算的基于测量的可定位纠缠下限。如果在实验中使用,这将转化为从特定基中的单量子比特测量中获得的可定位纠缠下限,这些测量将在感兴趣的子系统之外的量子比特上执行。为了计算这些下限,我们详细讨论了从稳定器状态获取局部幺正等效图状态的方法,其中包括一种新的可扩展几何方法以及一种适用于任意大小的一般稳定器状态的代数方法。此外,作为后一种方法的关键步骤,我们开发了一种可扩展的图形转换算法,该算法使用一系列局部互补操作在图中的两个特定节点之间创建链接。我们为这些转换开发了开源 Python 包,并通过将其应用于嘈杂的拓扑颜色代码来说明该方法,并研究可局部纠缠的见证和基于测量的下限如何随所选量子比特之间的距离而变化。
摘要。识别人类操作员的电阻颜色代码是一项相对简单的任务,给定足够的经验,以便对颜色和位置进行记忆。都存在困难,更不用说当电阻器具有五个或六个频段时增加复杂性,在这种情况下,其中一些具有不同的含义和值。本文提出了一条计算机视觉图像处理管道,该管道试图预处理图像,检测,分割和旋转电阻器,检测和分割颜色带,并最终确定电阻器,耐受性和温度系数的名义值。结果表明,如果光条件适当,则检测准确。
图2。(a)[lipf 6]/[sl] = 1/4,(b)[liotf]/[liotf]/[sl] = 1/1,(c)[libf 4]/[libf 4]/[sl] = 1/1,(d)[litfsa]/[litfsa]/[sl] = 1/1,(e)[lifsa] [lifsa] = 1/1/1/1/2,(f)[lIDF) [LICLO 4]/[SL] = 1/2溶剂。(a)和(b)的晶体学信息(CIF)文件分别存放在剑桥晶体学数据中心(CCDC)中,分别为CCDC 2292897和CCDC 2292899。(c),(d),(e)和(f)的绘制。(g)从参考文献中报告的CIF文件中重新绘制。12。颜色代码:紫色,李;粉红色,b;灰色,c;蓝色,n;红色,o;浅绿色,f;橙色,P;和黄色的氢原子未显示。
9.2.10 状态/预编码短数据包头 (SP_HEAD) PDU .......................................................................................... 98 9.2.11 原始短数据包头 (R_HEAD) PDU ................................................................................................ 98 9.2.12 定义数据短数据包头 (DD_HEAD) PDU ............................................................................................. 99 9.2.13 统一数据传输头 (UDT_HEAD) PDU ............................................................................................. 99 9.2.14 统一数据传输最后数据块 (UDT_LDATA) PDU ............................................................................. 99 9.2.15 速率 1 编码数据包数据 (R_1_DATA) PDU ............................................................................................. 100 9.2.16 速率 1 编码最后数据块 (R_1_LDATA) PDU ............................................................................................. 100 9.3 第 2 层信息元素编码........................................................................................................... 101 9.3.0 第 2 层信息元素编码 - 介绍 ...................................................................................................... 101 9.3.1 颜色代码(CC) ............................................................................................................................. 101 9.3.2 抢占和功率控制指示器(PI) ................................................
图2。(a)使用GCMC模拟在87.3 K.交叉点(绿色圆圈)和通道(黄色圆圈)孔(黑色圆圈(黑色圆圈))中使用的GCMC模拟获得的PCN-224的AR吸附等温线。封闭和开放圆圈分别对应于吸附和解吸等温线。(b)从吸附发作到完整填充的不同压力,在通道(绿色)和相交(黄色)孔之间的吸附分子分布的特征快照。每个隔室中的平均分子数在每个快照下面指示。(a)中的垂直虚线表示(b)中快照的压力。框架原子颜色代码:o,红色; H,隐藏; C,灰色; n,蓝色; ZR,紫罗兰。
蓝色氢是一种通过蒸汽甲烷改革或煤气化产生H 2的过程,但是产生的碳被捕获和隔离,而不是将其释放到大气中。蓝色氢的碳足迹因此取决于所使用的碳捕获技术的效率,最大CO 2捕获率通常以70%至95%的速度引用。蓝色氢的生产尚未大规模存在;但是,预计在未来几十年的全球绿色H 2产量的预计中,它将发挥重要的临时作用(请参阅下一章)。还指定了其他几种颜色代码用于氢生产,其“粉红色”和“黄色”氢表示电解为核或电网电源提供动力。“棕色”或“黑色”氢是指通过煤气制造的H 2,这是一个极高的CO 2排放的过程,与绿色氢相反。
蓝色氢气是一种通过甲烷蒸汽重整或煤气化生产氢气的过程,但产生的碳被捕获和封存,而不是将其释放到大气中。因此,蓝色氢气的碳足迹取决于所用碳捕获技术的效率,通常认为最大的二氧化碳捕获率为 70% 至 95%。蓝色氢气生产尚未大规模实现,但预计在未来几十年全球绿色氢气产量预计增加的过程中,蓝色氢气将发挥重要的过渡作用(见下一章)。氢气生产还指定了几种其他颜色代码,其中“粉色”和“黄色”氢气分别表示由核能或电网电力驱动的电解。“棕色”或“黑色”氢气指的是通过煤气化生产的氢气,该过程的二氧化碳排放量极高,与绿色氢气截然相反。
基因靶标中检测到的变异或插入/缺失(indel)及其颜色代表的亚群百分比;基因靶标中未检测到变异或插入/缺失,或仅检测到与耐药性无关的变异或插入/缺失;基因靶标覆盖率不理想;鉴定为非结核分枝杆菌(NTM)。分枝杆菌检测到的变异或插入/缺失通过最外层的密码子、氨基酸或核苷酸变化(缺失显示为*)指定,使用与上述相同的颜色代码表示耐药性相关和未表征的类别,或使用灰色( )表示与耐药性无关的变异或插入/缺失。目标参考序列根据基因靶标覆盖率着色如下:覆盖率>95%,覆盖率<95%。每个目标的检测限直方图的颜色编码如下:1%检测限3%,3%检测限80%。≤≤<≤
距离 d = 3、7 量子比特颜色代码(如图 1 所示)相当于 Steane 代码,它将一个逻辑量子比特编码为七个物理量子比特 1。量子比特由顶点处的点表示,逻辑算子 XL 和 ZL 可以横向选择,即与物理 X 和 Z 一起作用于所有 7 个量子比特。稳定器检查算子可以检测相位和位翻转错误,对应于 4 量子比特 X 或 Z 型算子 S ( i ) x 和 S ( i ) x ,每个算子作用于属于 3 个斑块的 4 个物理量子比特。该代码可以纠正七个物理数据量子比特中任意一个的最多一个故障。在本练习中,我们将研究量子纠错的工作原理,以及如何在该代码中实现逻辑门。