(+/-)0-100.0 30 10.0 30-10.0-10.0 30 10.0 30 10.0 10.0 30 10:00 1000 1 100.0 30 10 1100 3 9:00 1.3000 35.35 7:500-2000 4 PM 4,500 600 600 600 600 600 600 67.3000 67.00 500 500 67-270 180-2200-2300 50 150 emplo0-2400 8,500 6,500-3,300 4,200 4,200 3,200 3,200 3,200 4200 3300-3400 15 6.7 450 150 3400-3500 30 3,3 900 300 div>
湍流和阵风会导致施加在飞机结构上的空气动力和力矩发生变化,从而导致乘客不适,并且结构上必须设计能够支撑的动态载荷。通过设计阵风载荷缓解 (GLA) 系统,可以实现两个目标:第一,实现更高的乘客舒适度;第二,减少动态结构载荷,从而可以设计更轻的结构。本文提出了一种设计组合反馈/前馈 GLA 系统的方法。该方法依赖于多普勒激光雷达传感器测量的飞机前方的风廓线,并基于 H ∞ 最优控制技术和离散时间预览控制问题公式。此外,为了允许在这两个目标之间进行设计权衡(以实现设计灵活性)以及允许指定稳健性标准,引入了使用多通道 H ∞ 最优控制技术的问题变体。本文开发的方法旨在应用于大型飞机,例如运输机或公务机。模拟结果表明,所提出的设计方法在考虑测量的风廓线以实现上述两个目标方面是有效的,同时确保了设计灵活性以及控制器的稳健性和最优性。
摘要。飞机的结构尺寸将受到阵风、机动和地面载荷的显著影响。自适应载荷减轻方法(关键词:1g-wing)有望降低最大载荷,从而减轻结构重量。为了适当分析此类载荷减轻技术,需要采用多学科方法。为了实现这一目标,应用了阵风遭遇模拟的流程链,使用高保真方法对空气动力学、结构动力学和飞行力学学科进行模拟,这些学科在时间域中耦合。在具有和不具有副翼偏转的通用运输机配置的多学科模拟中,介绍了垂直阵风对机翼和水平尾翼上的合力、力矩、载荷分布的影响。
摘要:阵风、机动和地面载荷对飞机的结构尺寸有显著影响。自适应载荷缓解方法(关键词:1g 机翼)有望降低最大载荷,从而减轻结构重量。为了正确分析此类载荷缓解技术,需要采用多学科方法。为了实现这一目标,应用了阵风遭遇模拟的流程链,使用高保真方法对空气动力学、结构动力学和飞行力学等学科进行耦合,这些学科在时间域中耦合。在对具有和不具有副翼偏转的通用运输机配置进行多学科模拟时,介绍了垂直阵风对机翼和水平尾翼上的合力、力矩、载荷分布的影响。