航空航天业规模庞大(2018 年收入:8380 亿美元 1 ),错综复杂且相互关联。该行业近期表现强劲。由于每天有数百万人和数亿吨货物在世界各地长途和短途运输,利润创历史新高。2 该行业有望进一步增长。为了适应日益互联的世界航空旅行的持续增长,未来 20 年对新型商用飞机的需求可能达到约 40,000 架。3 然而,与其他所有行业一样,航空航天业也面临着重大挑战。制造、运营和服务飞机的公司一直在寻找能够优化性能的能力、技术和工具,无论是购买更好的收益管理软件还是创造更省油的设计。当该行业权衡人工智能和 3D 打印等技术改变运营的潜力时,还有另一项创新应该考虑:区块链。
修改《1958 年联邦航空法》第 312(b) 条(49 USC App. 1353(b))并在第一句后插入如下内容:“局长应当开展或监督研究,以开发技术并进行数据分析,预测飞机设计、维护、测试、磨损和疲劳对飞机寿命和飞行安全的影响,开发分析和改进飞机维护技术和实践的方法(包括对飞机结构的无损评估),评估飞机材料的防火防烟性能,开发改进的飞机内部防火防烟材料,开发和改进飞行中飞机火灾的防火防烟系统,开发先进的低可燃性飞机燃料和控制飞机燃料的技术,以尽量减少坠机后的火灾危险。”
关键词:飞机监测、机队优化、报废、老化飞机。摘要尽管结构完整性问题日益严重,维护成本不断上升,但军用飞机机队仍在不断老化。飞机并没有被大量替换或退役,而是寿命超过了其原始设计使用寿命。由于老化飞机的维护成本更高,空军的这一额外负担迫使他们采取更智能的方法来加强结构健康监测。随着数据记录技术的改进和记录容量的提高,结构健康监测工具在了解飞机寿命方面变得更加重要。积累的历史数据为报废机队优化提供了机会。本文对老化飞机问题进行了全面回顾,并提出了未来报废机队优化研究的方向。这些建议包括改变飞机利用率、优化飞机基地和预测结构疲劳,所有这些都可以实现整个机队的成本节约。
疲劳试验控制器的组件 Manjula B K EEE 部门 BMSIT&M 摘要:本文介绍了用于材料疲劳试验的伺服液压试验系统中计算机控制的单通道控制器的开发。使用称重传感器和 LVDT 获得的闭环控制,它向控制器提供与执行器的机械位置或其施加的负载成比例的电信号。电信号通过信号调节电路进行放大,该信号被馈送到伺服控制器以生成误差信号。使用差分放大器将反馈模式(无论是行程(LVDT)还是负载模式)与相应的设定点进行比较。数字模拟转换器的附加板用于将数字形式的设定点转换为模拟值。控制器的操作显示在计算机的控制台上。关键词:疲劳试验、控制器 DAC、ADC、负载模式和行程模式 1.简介 疲劳试验是确定飞机寿命的关键要求。疲劳试验有助于确定材料承受周期性疲劳载荷条件的能力。根据设计,选择的材料应满足或超过疲劳试验应用中预期的服务负载。循环疲劳试验会产生拉伸、压缩、弯曲、扭转或这些应力组合的反复加载和卸载。疲劳试验通常以拉伸 - 拉伸、压缩 - 压缩和拉伸压缩和反向加载。要进行疲劳试验,将样品装入疲劳试验机或疲劳试验机中,并使用预定的测试应力加载,然后卸载至零负载或相反负载[1]。然后重复此加载和卸载循环,直到测试结束。根据测试参数,测试可以运行预定的循环次数,也可以运行到样品失效[2]。疲劳测试的目的通常是确定材料在循环载荷下的预期寿命,但疲劳强度和抗裂性也是常见的要求值。材料的疲劳寿命是材料在单一载荷方案下可以承受的总循环次数。疲劳测试还用于确定样品在指定循环次数内可以承受的最大载荷。这些材料的疲劳极限比其他材料高,因为在任何材料受到波动力而非恒定力的行业中,所有这些特性都极为重要。疲劳试验类型:疲劳试验有几种常见类型,以及两种常见形式:负载控制高周疲劳和应变控制低周疲劳。高周试验往往与弹性状态下的负载有关,而低周疲劳试验通常涉及塑性变形。疲劳试验的材料类型 大多数材料在其使用寿命期间可能会以某种方式经历疲劳。然而,在疲劳是一个因素的应用中,通常会发现由金属或复合材料制成的部件。