引言航空业初期,驾驶依靠飞行员的感官判断。机载仪器逐渐出现(如高度计、空速指示器、指南针、人工地平仪等),驾驶舱也不断发展。20 世纪 70 年代引入了自动化系统 [1],例如飞行管理系统 (FMS)。这些自动化系统提高了安全性 [5, 10]、精确度和效率 [11]。然而,自动化也导致驾驶舱操作员数量的减少(目前为两名飞行员),从而改变了飞行员的任务。飞行员必须执行新的任务,如飞行计划、导航、性能管理和飞行进度监控 [12]。在很短的时间内,飞行员的任务变得更加被动,主要用于监控 [7, 9, 10]。
2011 年 5 月 9 日,一架波音 747-400 飞机从悉尼飞往新加坡。在巴厘岛东南约 100 公里处,所有发动机推力杆都已推进,飞机开始从飞行高度 1 (FL) 360 爬升至 FL 380。开始爬升后,机组人员注意到4 号发动机废气温度 (EGT) 已迅速升高至 850 °C。随后,4 号发动机 (Rolls-Royce RB211-524G2-T) 的推力杆被减速,直到 EGT 恢复正常限值。随后,机组人员注意到该发动机的 N2 2 振动仍保持在约 3.5 个单位,远高于正常运行水平,因此,他们选择关闭发动机。空中交通管制 (ATC) 接到通知后,飞机下降至 FL 340。航班继续飞往新加坡,没有发生进一步事故。
摘要 建立了倾转旋翼机接近航空母舰的路径规划模型,模型中考虑了倾转旋翼机的特点、着舰任务和航母所处环境。首先,给出了倾转旋翼机在各飞行模式下的运动方程和机动性能,给出了控制变量和飞行包线的约束条件。将倾转旋翼机返航分为3个阶段,对应倾转旋翼机的3种飞行模式,并设定了各阶段的约束条件和目标。考虑到倾转旋翼机的飞行安全性,将航母所处环境描述为可飞空间和禁飞区,并考虑运动航母所引起的湍流和风场的影响设定了禁飞区。将路径规划问题转化为在控制变量和状态变量约束下的优化问题。根据所建模型的特点,结合“逐步”和“一次性”路径搜索策略,设计了一种基于鸽派优化(PIO)的路径规划算法。仿真结果表明,倾转旋翼机能够以合理的着陆路径到达目标点。并通过对不同算法的比较,验证了PIO算法能够解决该在线路径规划问题。
附图列表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
这项工作调查了较高纵横比翼的潜力,以提高远程飞机的燃料效率。高纵横比机翼的主要特征是讨论的,并提出了航空结构机翼优化的过程。基于尾边控制表面偏转的自适应机翼技术,以实现最佳的升力分布,从而最大程度地减少巡航战斗中的阻力并最大程度地减少操纵流的负载减少,并由高级结构技术通过增加的应变易于应变和后式结构技术来补充。在优化过程中,使用高实现模拟方法来确定跨性别巡航流中的权限,机翼上的机翼上的载荷和复合机翼盒的质量。在所有流动条件下都考虑了静态气动弹性效应。最小化三个典型战斗任务的燃油消耗代表了目标函数。考虑控制表面和飞机装饰的几何整合。该过程的应用以优化机翼平面形,扭曲分布和控制表面变化构成了本出版物的主要部分。结果显示了12个顺序的最佳机翼纵横比。将纵横比的进一步增加到13。5显示空气动力学性能和由此产生的燃料消耗没有进一步改善。
民用超音速飞机运载乘客和货物的速度比传统亚音速客机快得多。尽管早期商用超音速飞机(欧洲协和式飞机和俄罗斯 TU-144)于 2003 年停飞,但美国对民用超音速飞行的兴趣正在复苏。这种兴趣部分源于过去四十年材料、推进、飞行控制技术、分析方法和性能预测方面的进步,这些进步大大提高了设计、测试和运行盈利、高效、安全、可靠的超音速民用飞机的期望(Nicolai 和 Carichner 2010;McIsaac 和 Langton 2011)。尽管预期技术会有所进步,但这种飞行方式的物理现实是,超音速飞机仍然可能比亚音速飞机对环境产生更大的影响(就噪音和排放而言),并且可能会超过现行亚音速法规规定的噪音和排放限值。
民用超音速飞机运载乘客和货物的速度比传统亚音速客机快得多。尽管早期商用超音速飞机(欧洲协和式飞机和俄罗斯 TU-144)于 2003 年停飞,但美国对民用超音速飞行的兴趣正在复苏。这种兴趣部分源于过去四十年材料、推进、飞行控制技术、分析方法和性能预测方面的进步,这些进步大大提高了设计、测试和运行盈利、高效、安全、可靠的超音速民用飞机的期望(Nicolai 和 Carichner 2010;McIsaac 和 Langton 2011)。尽管预期技术会有所进步,但这种飞行方式的物理现实是,超音速飞机仍然可能比亚音速飞机对环境产生更大的影响(就噪音和排放而言),并且可能会超过现行亚音速法规规定的噪音和排放限值。
民用超音速飞机运载乘客和货物的速度比传统亚音速客机快得多。尽管早期商用超音速飞机(欧洲协和式飞机和俄罗斯 TU-144)于 2003 年停飞,但美国对民用超音速飞行的兴趣正在复苏。这种兴趣部分源于过去四十年材料、推进、飞行控制技术、分析方法和性能预测方面的进步,这些进步大大提高了设计、测试和运行盈利、高效、安全、可靠的超音速民用飞机的期望(Nicolai 和 Carichner 2010;McIsaac 和 Langton 2011)。尽管预期技术会有所进步,但这种飞行方式的物理现实是,超音速飞机仍然可能比亚音速飞机对环境产生更大的影响(就噪音和排放而言),并且可能会超过现行亚音速法规规定的噪音和排放限值。
摘要:商业航空的发展受到提高效率从而降低排放的需求的推动。全电动飞机提供了一种消除直接燃料燃烧排放的途径,但其发展受到当前电池能量和功率密度的限制。多功能结构动力复合材料结合了承重和储能功能,为高能量密度电池提供了替代方案,并有可能使电动飞机更轻更安全。本研究调查了将结构动力复合材料集成到未来电动飞机中的可行性,并评估了其对排放的影响。使用空客 A320 作为平台,概念性地设计了三种不同的电动飞机配置,包括结构动力复合材料、细长机翼和分布式推进。通过确定飞机任务性能要求和重量来估算结构动力复合材料所需的特定能量和功率。与传统 A320 相比,结构功率复合材料 >200 Wh/kg 的并联混合动力 A320 可在 1500 公里的任务中将燃油效率提高 15%。对于全电动 A320,结构功率复合材料 >400 Wh/kg 可将为 1000 公里飞行提供动力所需的电池比能或质量减半。