其次,该文件列出了所有更定量地描述您的车辆的设计要求。例如,车辆需要具有一定的耐久性。您可能希望施加与我们在课堂上已经讨论过的要求不同的要求。例如,您可能希望指定特定的最小速度。设计要求共同定量地描述了最终设计将做什么,并有助于缩小设计空间的大小。设计要求可能定义已知独特的设计空间的一部分,以提供更大的市场潜力或成本优势。总之,本文档描述了您要设计的内容。这是一份非常重要的文档。如果不清楚您要完成什么,您注定会迷失方向并产生不太可能成功的设计。如果您在 DR&O 中提出我不赞同的建议,我可能会要求您进行修改。
• ASTM D256-10(2018) – 测定塑料 IZOD 摆锤冲击强度的标准试验方法 • ASTM D790-17 – 非增强和增强塑料及电绝缘材料弯曲性能的标准试验方法 • ASTM D792- 20 – 位移法测定塑料密度和比重(相对密度)的标准试验方法 • ASTM D2344/D2344M- 16 – 聚合物基复合材料及其层压板短梁强度的标准试验方法 • ASTM D3039/D3039M- 17 – 聚合物基复合材料拉伸性能的标准试验方法 • ASTM D3171- 15 – 复合材料成分含量的标准试验方法 • ASTM D3518/D3518M- 18 – 面内剪切标准试验方法通过 ±45° 层压板拉伸试验对聚合物基质复合材料的响应 • ASTM D3418-15 - 通过差示扫描量热法 (DSC) 测定聚合物转变温度和熔化焓和结晶的标准测试方法 • ASTM D5766/D5766M-11(2018) – 聚合物基质复合层压板开孔拉伸强度的标准测试方法 • ASTM D5961/D5961M-17 – 聚合物基质复合层压板轴承响应的标准测试方法 • ASTM D6641/D6641M- 16e1 – 使用组合载荷压缩 (CLC) 试验工装对聚合物基质复合材料压缩性能的标准测试方法 • ASTM D6742/D6742M-17 – 聚合物基质复合层压板填孔拉伸和压缩试验的标准实践 • ASTM E831- 19 – 通过热机械分析测定固体材料线性热膨胀的标准测试方法 • ASTM D7028-07(2015) – 通过动态机械分析 (DMA) 测定聚合物基质复合材料玻璃化转变温度 (DMA Tg) 的标准测试方法 • ASTM E831- 19 – 通过热机械分析测定固体材料线性热膨胀的标准测试方法 • FAR 25.853 (A),附录 F,第 I 部分,(a)、1、(i): 60 秒 – 燃烧长度和熄灭时间 • FAR 25.853 (D),附录 F,第 IV 部分 – 滴落时间和热释放速率 • FAR 25.853 (D),附录 F,第 V 部分 – 烟雾排放特性
在飞机项目管理中,可靠性和可维护性对于确保系统安全、优化制造过程以及在需要维护时改进组装/拆卸操作至关重要。纳入此类要求有助于最大限度地降低生命周期成本,延长飞机的剩余寿命,从而提高客户满意度。虽然飞机工程文献中发表的大多数论文都含糊其辞,或者没有准确描述可靠性和可维护性 (RM) 方法在早期设计阶段的作用,但本文阐明了这个问题。本文讨论了各种概念,例如可靠性设计和风险评估分析,以提高部署阶段的飞机安全性和可靠性。本文还重点介绍了如何使用各种方法、工具和标准解决可靠性预测问题,例如故障模式和影响分析、故障树分析以及 MIL-STD-217f 和 ARP4754 等指南。最后,本文表明,可靠性在飞机生命周期的所有阶段都至关重要。
本文追溯了 Kuechemann 创办《航空航天科学进展》杂志 50 年来远程喷气式运输机的发展历程。本文特别关注跨音速空气动力学。在 Kuechemann 的一生中,人们对跨音速流动和后掠翼设计有了很好的定性理解,但跨音速流动仍然难以定量预测。在过去的 50 年里,随着复杂数值算法的引入和可用计算能力的惊人提升,这种情况已经完全改变,结果是空气动力学设计现在主要通过计算机模拟进行。此外,基于控制理论的气动形状优化的发展使得只需两次模拟就可以设计出具有竞争力的后掠翼,如本文所示。虽然远程喷气式飞机的外观没有太大变化,但信息技术的进步实际上已经通过计算机辅助设计 (CAD)、计算结构力学 (CSM) 和多学科优化 (MDO) 的同步进步改变了整个设计和制造过程。他们还通过采用数字电传操纵和先进的导航技术改变了飞机的运行。& 2011 Elsevier Ltd. 保留所有权利。
这些通信过程是存在的,但由 OEM/DAH 拥有,而不是由运营商拥有。运营商应使用现有的 OEM/DAH 通信系统(如果不存在,则建立一个)来报告与 OEM/DAH 维护说明相关的安全问题。每个 OEM/DAH 都有一个专有的电子通信系统,可实现 OEM/DAH 和运营商之间的安全消息传递。这些专有的电子通信系统具有自动分发给主题专家和响应跟踪等功能。工作组中的所有 OEM/DAH 都有这样一个正式的沟通流程。由于通信流量大,机身 DAH 的通信系统比供应商 OEM/DAH 更复杂。此外,许多有关供应商零件/子系统/系统的问题都来自机身 DAH,并由机身 DAH 回答。关于机身 DAH 通信系统的最佳实践是能够直接将供应商与通信系统联系起来,以便获得供应商对运营商问题的响应。
摘要:ICAO 附件 16 规定用于认证亚音速运输飞机的声学性能。每架飞机都根据在进场和离场沿线特定认证位置测量到的 EPNL 水平进行分类。通过模拟此认证过程,可以确定所有相关参数并评估有希望降低噪音认证水平的措施,以符合基本 ICAO 规定,即飞机的允许运行条件。此外,模拟是评估新技术和不存在的飞行器概念的唯一方法,这也是本文所述研究活动的主要动机。因此,ICAO 附件 16 规定被整合到 DLR 现有的噪音模拟框架中,并在概念设计阶段实现新型飞机概念的虚拟噪音认证。预测的认证水平可以直接选择为设计目标,以便为新飞机设计实现有利的 ICAO 噪音类别,即同时考虑设计和由此产生的飞行性能。可以对所考虑的每种概念飞机设计的操作限制和允许的飞行程序进行详细评估和识别。可以对影响预测噪声认证水平的相关输入参数进行敏感性研究。具有主导作用的特定噪声源
提出了一种用于 Embraer 190/195 运输类飞机的新型 DC-Link VSCF AC-DC-AC 电力系统转换器。所提出的转换器可以取代现有的基于 CSCF IDG 的传统系统。几架当代生产的飞机已经将 VSCF 作为主要或备用电源。过去旧的 VSCF 系统存在问题;然而,开关电源电子和数字控制器已经成熟,我们认为现在可以安全地集成并取代现有的为 CSCF AC 发电机供电的恒速液压传动装置。使用 IGBT 功率晶体管进行中等水平的功率转换和相对快速有效的切换。利用 VSCF 进行电力生成、转换、分配、保护和负载管理提供了传统 CSCF IDG 系统所不具备的灵活性、冗余性和可靠性。针对 E190/195 提出的 DC-Link VSCF 系统利用 12 脉冲整流器、降压转换器和 3-w 12 步逆变器(带 D-Y、Y-Y 和 Y-D 3-w 变压器)提供多个级别的 3-w 交流和直流电源,即 330/270/28 VDC 和 200/115/26 VAC。使用三个参考交流相位信号和高达 100 kHz 三角载波的传统双极双边载波脉宽调制可用于消除所有偶数和许多奇数超谐波。无源低通滤波器用于消除高次谐波。RL 交流负载与同步和感应交流电机相关,并且还包括无源交流负载。总功率因数超过 85%。电压和电流的总谐波失真低于 5%,从而满足 MIL-STD-704F 和 IEEE Std.519 电能质量标准,同时避免了有源滤波器的需要。使用连续周期调谐方法设计和调谐了几个调节同步发电机直流励磁和逆变器组的 PI 和 PID 控制器,以提供反馈回路所需的性能和稳定性。Mathworks 的 Simulink TM 软件用于电气元件和电路的仿真。模拟了飞机运行的几个关键场景,例如复飞,以评估 VSCF 系统的瞬态行为。
1. 塞尔维亚贝尔格莱德军事技术学院 摘要:航空工业面临着降低运营和维护成本的诸多挑战。降低这些成本的可能方法之一是引入无线传感器网络 (WSN)。WSN 已经在安全关键和非安全关键分布式系统中找到了多种应用。本文讨论了 WSN 在飞机结构健康监测中的应用。特别关注了使用市场上现有组件的 WSN 设计问题。 关键词:无线传感器网络、飞机结构健康监测、微机电系统、基于状态的维护、传感器节点 介绍 飞机的重量直接影响运营成本。目前,飞机重量减轻一磅意味着每架飞机每年可节省 100 美元。航空工业在减轻重量方面进行了许多创新。多年来,机身中复合材料、混合材料和先进铝合金的比例大幅增加,实现了显著的重量效益。然而,由于保守的设计理念仍然盛行,复合材料、混合材料和先进铝合金的全部潜力尚未实现,因为材料允许量大幅减少。必须提高对这些先进材料的疲劳、裂纹/分层识别/增长和损伤容限特性的评估信心。这将有助于减少当前飞机结构设计中的保守性,从而实现细长的飞机机身结构。在过去十年中,无线传感器网络 (WSN) 已成功应用于许多工程领域,例如:结构健康监测 (SHM)、工业应用、环境监测、交通控制、健康应用等。本文讨论了 WSN 在飞机结构健康监测中的应用。
为了满足异类的社会需求,如今需要更复杂,创新,可持续和循环的航空系统。可持续和循环航空的目的是减少与所有航空系统活动和运营相关的燃料消耗,废物和排放方面的影响(Flightath2050,2011)。因此,必须将航空研究的分支扩展到整个飞机生命周期,从设计到生产,再到系统活动结束后的处置。这肯定会扩大设计空间,必须考虑在设计阶段与飞机开发不同阶段相关的更多变量。但是,这为航空行业提供了极大的可能性,以赢得如今的全球和竞争市场(Wu&O'Grad,1999年)。在此框架中,航空中的DLR系统建筑研究所旨在开发方法,以使多个领域的并发耦合(例如设计,制造)在飞机设计的早期阶段,以实现优化整个飞机生命周期的解决方案。这一雄心勃勃的目标的第一步是在欧洲资助的H2020项目敏捷4.0(INEA&Consortium,2019年)中的穿着。通过利用多学科设计优化(MDO)和基于模型的系统工程(MBSE)技术,该项目旨在在整个生命周期中创建系统中系统中的数字表示(Ciampa&Nagel,2021年)。尤其是,挑战之一是在飞机设计的早期阶段包括航空供应链的所有主要支柱,目的是使创新的折衷研究从未进行过。
中国商飞上海飞机设计研究院 COMAC Shanghai Aircraft Design And Research Institute 中国商飞上海飞机制造有限公司 COMAC Shanghai Aircraft Manufacturing Co.,Ltd 中国商飞上海飞机客户服务有限公司 COMAC Shanghai Aircraft Customer Service Co.,Ltd 中航飞机股份有限公司 AVIC Aircraft Co., Ltd 中航飞机股份有限公司设计研发中心 AVIC Aircraf Design And Research Center 中航通用飞机有限责任公司 China Aviation Industry General Aircraft Co.,Ltd 中航通用飞机设计研究院 AVIC General Aircraft Design And Research Institute 中航工业直升机设计研究所 AVIC Helicopter Design And Research Institute 中航工业北京航空制造工程研究所 AVIC Beijing Aeronautical Manufacturing Technology Research Institute 中航飞机有限责任公司西安飞机分公司 AVIC Xi’an Aircraft Industry (Group) Corporation Ltd 中航工业哈尔滨飞机集团有限责任公司 AVIC Haebin Aircraft Industry Group Corporation Ltd 中航工业昌河飞机工业(集团)有限公司 AVIC Changhe Aircraft Industry (Group) Corporation Ltd 江西洪都商用飞机股份有限公司 AVIC Jiangxi Hongdu Commercial Aircraft Co.,Ltd 中航成飞民用飞机有限责任公司 AVIC Chengdu Commercial Aircraft Company Limited