要评估现代飞机和飞机系统,需要了解如何优化空气动力学性能。如今的性能规格远远超出了点设计规格,并且在很大程度上取决于优化以满足特定的战术要求,无论飞行器是设计为拦截器、空中优势战斗机、战略空运机、战略轰炸机还是任何其他作战角色。目标是要求性能效率覆盖整个飞行范围,以最佳的武器、发动机和机身整体组合满足作战需求。F-14 和 F-15 是第一代采用这种方法设计和评估的战斗机。F-16、F-18、龙卷风和幻影 2000 等较新的战斗机设计都是在充分认识到优化性能需求的情况下构思的。
无人机的重量不得超过三 (3) 磅。 无人机的翼展或旋翼直径不得超过 3 英尺。 飞行范围仅限于指定的公园区场地。 禁止携带杀伤人员装置(射弹、化学武器、电气武器、定向能武器、爆炸物和枪械)。 飞行高度必须低于五十 (50) 英尺,且周围没有障碍物。 操作员必须始终保持对无人机的视线,并且不得借助矫正镜片以外的任何设备。 禁止在人群附近或上方飞行。 禁止在动物附近或上方飞行。 仅限白天操作。 禁止粗心或鲁莽操作。 操作员和无人机系统必须遵守所有联邦、州、地方和 FAA 法规和法律。
1。简介一般而言,飞机可以分为两类:固定翼和旋转翼,既有优点和缺点。传统固定翼航空车的空气动力学在[1]中介绍,[2-4]中的传统旋转飞机在[1]中提供。关于物体的空气动力学,它受两个主要力的影响:升降和拖动。升力作用于相对风,并反对另一种称为重量的力。阻力与相对风平行,并反对称为推力的力。固定翼航空车的运行取决于有足够的起飞跑道的可用性,这导致了该地点的关键选择。另一方面,这种平台的飞行范围明显长于旋转翼航空车提供的时间。在[3,4]中,有关影响旋转空中的空气动力学的更详细的研究
需要相互考虑这两个指标,以根据特定的任务和设计问题获得最佳的存储氢和存储系统的重量。尤其是对于CS23类的通用航空飞机,例如由Lange Research Firscraft制造的Antares E2,鉴于为氢存储的建造空间很低。因此,需要优化可用构建空间的容积存储利用,以存储足够的燃料以实现足够的飞行范围。因此,需要考虑通过增加存储利用率来最大化储存氢的数量。对于CFRP层压板的机械性能未优化的容器形状,主要导致这些血管形状的重量储存密度下降。需要优化重量储存密度和体积存储利用,以使氢用于通用航空。
具有挑战性的机动,涵盖整个 0 ◦ –360 ◦ 飞行范围。此类 AUV 可受益于海洋生产、环境感知和安全等新用例,通过实现对接、检查或冰下作业的新功能。为了进一步探索它们在这些场景中的能力,必须能够在整个包络线上模拟它们的飞行动力学,其中包括强非线性效应和大攻角下的湍流。利用准确、高效的仿真模型,可以生成新的水上机动并制定控制策略。因此,本文提出了一种实时高效、准确地模拟水上机动的策略。通过结合分析、半经验和数值方法,合成了一个多保真流体动力学数据库,从而捕捉整个包络线上的流体力和力矩。组件构建工作流用于使用从数据库生成的查找表来组装非线性飞行动力学模型。该模拟模型用于执行高级水上机动的实时模拟。模拟结果与文献和实验结果一致,并且模拟器在设计新机动和控制策略时可作为开发工具使用。