简单总结:反刍动物饲料中除草活性物质(如草甘膦)的残留会导致动物口服接触。因此,草甘膦对反刍动物健康可能产生的毒性影响令人担忧。虽然一些研究分析了草甘膦残留对奶牛的影响,但对育肥公牛的研究却很少。因此,目前对德国荷斯坦公牛的喂养研究是在真实的体内场景中进行的,这种场景可能在德国实施草甘膦使用限制之前发生,在其他国家可能仍然可行。除了喂养含有或不含草甘膦残留的饮食数周外,还采用了不同的浓缩物比例来分析不同能量和营养供应以及不同的瘤胃环境对草甘膦潜在影响的假定影响。在测试条件下,草甘膦暴露不会对动物的表现或其他健康相关特征产生不利影响。观察到的草甘膦对选定血液参数的假定影响相当微弱且不一致。相比之下,精饲料和时间显著影响了大多数实验参数。总之,在德国以前真实的暴露条件下,所有动物在整个试验过程中都保持临床不明显。
本研究涉及温度和对Tenebrio molitor的营养价值的影响,尤其是在粗蛋白,氨基酸,脂肪和脂肪酸剖面的含量上。tenebrio molitor幼虫在15、20和25°C中保存,并用小麦麸皮,小扁豆粉和混合物喂食。通过国际标准方法对参数进行了分析。通常,随着饲料中小扁豆的增加,粗蛋白含量增加。温度和进料的变化最为明显,在必需的氨基酸谷,ARG和LEU上。在用小麦麸皮的昆虫中,在20°C下确定了最高的平均脂肪含量。最低的脂肪含量是在15°C的麸皮昆虫中确定的。脂肪含量依赖于小扁豆粉的饲料中的温度以及小麦麸和小扁豆粉的混合物在统计上微不足道(P> 0.05,Kruskal – Wallis,Mann – Whitney Post HOC HOC测试)。在15°C和麸皮饮食的饲养温度下,获得了最高的多烯脂肪酸。得出的结论是,较高比例的蛋白质饮食可以增加昆虫中粗蛋白的含量。温度的升高通常仅导致硝基物质含量略有增加。因此,饲料对这种营养参数的影响比饲养温度的影响要重要得多。通常,可以说饲料和温度也会显着影响脂肪含量。
摘要硒是家禽的重要营养素,对于免疫系统调节和功能至关重要。我们研究了补充饮食硒(SE)对免疫反应,硒蛋白P,程序性细胞死亡,抗氧化剂和代谢基因在鸡肝发育中的影响。使用了400只雄性小鸡(肉鸡),并将鸟类平等地分为4种饮食治疗,作为每种治疗的100只鸟类。对照第一组(T1)喂养标准饮食,第二个实验组(T2)被喂食实验饮食(一种含有 + 0的基本饮食。4 mg无机硒SE/kg)和未处理的水,第三个实验组(T3)将硒添加到水中(标准饮食和处理水(300 ppm)溶液硒),第四实验组(T4)将硒添加到水中(溶液300 ppm),并喂食实验饮食(基本饮食)4 mg无机硒/kg)。喂食6周后单独收集肝脏。结果表明,T4中IL-1β基因的表达增加,而SPP1基因在T3中的增加增加,因为T4和T3中FAS和FASLG基因的显着增加。T4和T3中的抗氧化剂和代谢基因也分别增加。因此,这些结果表明,含有硒的营养补充剂,尤其是在用水或水和饲料中给出时,改善鸡肝组织中的免疫反应,凋亡,抗氧化剂和代谢基因。
生物乙醇是一种可再生能源的形式,可以用燃料或能源作物产生。乙醇是由农业饲料量和农作物残留物中存在的糖的发酵产生的。这项研究调查了使用花生壳等农业废物作为乙醇生产的使用。最初,将花生壳洗涤,干燥并研磨成粉末。然后使用酵母对其进行乙醇的产生。孵育20天后,使用二色酸钾法估计乙醇。使用1%酵母时,获得了最大乙醇产量(1.55%)。为了提高乙醇产生的效率,从牛粪倾倒土壤部位分离出纤维素分解细菌。筛选10个细菌分离株以产生纤维素酶。其中一个细菌显示出偶像的最大脱色化,该杂交受到营养汤的酶产生。生物体显示出558.12 U/mL的最大酶活性。使用16S rDNA测序将分离的纤维素分解细菌鉴定为炭疽芽孢杆菌。从花生壳中产生的乙醇产生再次使用从细菌中分离出的各种粗纤维素酶。估计结果显示乙醇的3.8%作为最大值。然后,使用旋转蒸发剂将乙醇凝结,并在估计时显示7.3%的乙醇。最后,通过碘型测试证实了乙醇的存在。因此,花生壳可以有效地用于生产乙醇,将来可以用作高潜在的运输燃料来源。
目的:认知功能在评估个人生活质量方面起着关键作用。本研究旨在调查具有抗氧化和抗炎特性的天然二羧酸壬二酸 (AzA) 如何影响氯化铝 (AlCl 3 ) 引起的大鼠海马行为变化和生化变化。方法:将 32 只雄性 Wistar 大鼠分为四组,分别通过口服管饲法接受蒸馏水、AzA 50 mg/kg、AlCl 3 100 mg/kg 和 AzA 加 AlCl 3 6 周。使用开放式迷宫、高架十字迷宫、新物体识别 (NOR)、被动回避任务和 Morris 水迷宫 (MWM) 测试评估行为变化。此外,还检测了丙二醛 (MDA)、羰基蛋白、肿瘤坏死因子-α (TNF- α )、白细胞介素-1β (IL-1 β )、核因子-κB (NF- κ B)、C/EBP 同源蛋白 (CHOP)、糖原合酶激酶-3β (GSK-3 β )、脑源性神经营养因子 (BDNF) 和乙酰胆碱酯酶 (AChE) 活性。结果:AzA 显著影响 AlCl 3 引起的焦虑样行为和学习记忆障碍。它还降低了 AlCl 3 对 MDA、羰基蛋白、TNF- α 、IL- 1 β 、NF- κ B 和 GSK-3 β 状态的毒性作用;然而,它对 AlCl 3 引起的 CHOP、BDNF 和 AChE 活性变化的有益影响并不显著。结论:这些研究结果表明,AzA 可以改善行为和认知功能,并且几乎可以限制 AlCl 3 引起的氧化应激和神经炎症。
米亚纳叶具有与抗生素相当的细菌抑制特性,可用于治疗虾中的颤动。然而,米亚纳叶中的生物活性化合物及其作为饲料中免疫刺激物的潜力,尤其是它们对总血细胞的影响和老虎大虾的吞噬活性,尚未得到充分探索。该实验以0、10、20和40G/ kg的浓度使用Miana叶提取物。生物活性化合物,并使用SPSS计划对总血细胞,吞噬活性进行统计分析和老虎虾存活。分析确定了MIANA叶提取物乙醇馏分中的100种化合物。其中,具有最高峰面积的三种化合物为:氨基甲酸,甲基酯(CAS甲基甲酯)为21.13%; 4(5H) - 噻唑龙,2-氨基 - (Cas pseudothiohydantoin)为16.16%;和环氧硅氧烷,己酰胺(CAS 1,1,3,3,5,5,5-己糖甲基 - 环己烷烷)为20.50%。实验结果表明,米亚纳叶提取物显着影响吞噬活性和存活,但不影响虎虾的总血细胞。在40g/ kg处理中观察到吞噬活性,存活和总血细胞的最高值,分别为76%,6.25 x 10^5 cfu/ ml和86.67%的值。总而言之,Miana叶提取物含有活跃的抗菌,抗病毒和抗炎化合物,并增强了总血细胞,吞噬活性和虎虾的存活率。
摘要:赭曲霉毒素 A (OTA) 是一种众所周知的霉菌毒素,广泛分布于食品和饲料中。真菌基因组测序对于识别已知和新化合物的次级代谢物基因簇非常有用。对 A. steynii、A. westerdijkiae、A. niger、A. carbonarius 和 P. nordicum 中 OTA 生物合成簇的比较分析表明,在五个结构基因 (otaA、otaB、ota、otaR1 和 otaD) 中,OTA 簇的组织具有高度的同源性。此外,最近对黑曲霉 OTA 产生菌进行的详细比较基因组分析发现了一个环化酶基因 otaY,它位于 otaA 和 otaB 基因之间的 OTA 簇中,编码的预测蛋白质与 SnoaL 的结构域高度相似。这些蛋白质已被证明能催化链霉菌中产生的聚酮抗生素生物合成中的闭环步骤。在本研究中,我们证明了在 OTA 允许条件下 A. carbonarius 中环化酶基因的上调,这与其他 OTA 簇基因的表达趋势及其在 OTA 生物合成中的作用一致,即通过完全基因缺失。我们的研究结果首次指出了环化酶基因参与了 OTA 生物合成途径。它们代表着对 A. carbonarius 中 OTA 生物合成分子基础的理解向前迈出了一步。
棉酚是棉花 ( Gossypium hirsutum L.) 中常见的一种萜醛,对植物抵御害虫和病原体至关重要。然而,其固有毒性限制了棉籽在食品和饲料中的使用。这项研究重点验证了 (+)-delta- 杜松烯合酶基因家族的表达模式,该基因家族在棉酚的生物合成中起着至关重要的作用。我们的目标是利用这些信息指导基因组编辑策略,以降低棉籽中的棉酚水平。我们使用定量实时 PCR (qRT-PCR) 分析了 32 个 (+)-delta-杜松烯合酶基因在胚珠和叶片中的表达,涵盖六个发育阶段,从开花后 (DPA) 20 到 45 天,每隔五天一次。我们的结果显示,无论处于哪个发育阶段,都有 10 个基因在胚珠中表达。其中,六个基因:Gohir.A04G023700、Gohir.D05G363800、Gohir.A08G087000、Gohir.D05G363900、Gohir.D05G364000 和 Gohir.D05G364300,在各个阶段始终表现出明显更高的表达水平。值得注意的是,Gohir.D05G363900、Gohir.D05G364000 和 Gohir.D05G364300 在所有阶段都表现出略高的表达水平,使其成为靶向基因组编辑的合适候选基因。这些发现为 (+)-delta- cadinene 合酶基因家族的表达动态提供了宝贵的见解,并确定了未来基因组编辑实验的潜在靶基因,旨在通过降低棉酚含量来提高棉籽的利用率。
“ nano”,它源自拉丁语nanus并表示矮人,它是指一个非常小的测量单位,等于一亿米的十亿分。纳米技术在原子和分子水平上处理物质的操纵,在畜牧业和许多领域都有一个应用领域。纳米大小的饲料添加剂近年来一直处于牲畜领域的最前沿,已成为一种创新应用,用于增加饲料的营养价值并优化动物健康和性能。由于这些添加剂是纳米大小的颗粒,其表面积增加,因此它们可能对许多因素产生积极影响,例如消化率,营养吸收,免疫系统,生长和发育。与较大的颗粒相比,用作饲料添加剂的纳米颗粒形式的矿物质可以通过穿过肠壁到身体细胞来增加生物利用度。该物质的纳米水平不仅提高了动物的生产率,而且还带来了提高进料分子功能的潜力。纳米饲料添加剂增加了饲料的消化和吸收,使动物可以从饲料中受益。但是,这种方法存在一些挑战。这些包括可能产生内毒素,由于与天然养分的相互作用而减少的养分吸收,动物体内纳米颗粒积累的可能性,健康风险,道德考虑,环境问题以及一些负面影响,例如干扰与天然养分的干扰,这些养分可以通过包含的包含来避免。本文讨论了有关纳米尺寸的饲料添加剂的最新研究,这些添加剂可为动物营养提供潜在的好处。
植物药越来越多地用于水产养殖中,以促进健康和预防疾病。在这篇综述中,我们讨论了植物养殖在全球水产养殖中的eícacy,并通过其行动方式,可能在这些活动中起关键作用。同样,某些具有据可查的植物,具有广谱抗菌素,免疫调节活性和抗氧化特性。这些可能是有利的,因为艾sh饲料中的补充是刺激α的免疫功能。植物提取物可能通过不同的模式对动物健康产生积极影响,而不是仅依靠单一模式。已显示使用草药作为饮食添加剂可增强免疫力防御机制。最近,植物治疗已被纳入水产养殖中,从而增加了生长速率和抗病性,从而导致了更可持续的实践。在这一领域仍在完成工作,以鉴定新的生物活性化合物,了解它们的工作原理并确定可以确保该化合物在需要时到达细胞的递送系统。可以将它们与可持续的方法(例如水蛋白酶系统)合并,并可能保持有机认可,同时减少食品上的化学残留物和维持环境健康。这些新兴的植物学方法有望在水产养殖中为疾病管理具有可持续的可持续策略,从而支持消费者的转变,以需求安全且可持续生产的海鲜。植物治疗提供的优势表明它们是开发可持续和环保水产养殖业的重要工具。