多模式航天器推进系统集成了两种或多种使用共享推进剂的推进模式。伊利诺伊大学厄巴纳-香槟分校目前正在与 Froberg Aerospace, LLC 合作开发一种结合化学分解模式和电喷雾模式的多模式系统。从根本上讲,多模式航天器推进系统由推进器、电源处理单元和推进剂进料系统组成。本文详细介绍了之前开发的原型单推进剂电喷雾推进器的电源处理单元和进料系统的持续开发。电源处理单元由两个独立的升压电路组成,一个在电喷雾操作期间提供 3.25 kV DC,另一个在化学模式操作期间提供 24 V DC。进料系统架构是一个单一的气体加压系统,每个操作模式都有不同的流路,并且必须在电喷雾模式下提供约 850 nL/s 的体积流速,在化学模式下提供 100 μL/s 的体积流速。
由于与其他电源存储方法相比,其每单位质量高能量,因此锂离子电池目前在大多数便携式消费者小工具1(例如手机和笔记本电脑)中使用。它们还具有高功率与重量比,出色的高温性能和最小的自我释放。锂离子(液化)电池在近几十年以来,作为各种应用的可行动力来源,包括电动汽车和混合动力汽车,电网和太阳能储能。li-ion电池被广泛推荐为扩展驾驶范围和快速加速的电源。li-ion电池在快速充电期间产生热量,并在高电流水平下排放周期。此外,温度和不均匀性对其储能能力和耐用性有重大影响。
[2][3]作者介绍了一种锥形缝隙天线和一种对映锥形缝隙天线,通过合并六个以上的谐振来实现 UWB 响应。这种结构有许多几何参数,并且在不同频率下获得的辐射模式也不稳定。Hoods 等人 [4] 提出了一种双平面 UWB 结构,它具有小增益和不均匀的辐射模式。在 [5] 中,作者介绍了一种紧凑型 UWB 天线,其中通过两个半圆来增强带宽。在 [6] 中,通过引入一个带缝隙的附加环形结构来实现 UWB 操作。[7] 中讨论了一种基于混合缝隙馈电网络的 UWB 天线。[8] 中介绍了通过在微带馈电的接地平面上创建 UWB 特性。Shameena 等人 [9] 介绍了一种 CPW 馈电 UWB,其中使用具有许多维参数的阶梯形缝隙来实现 UWB 特性。C Vinisha 等人[10] 介绍了一种电小尺寸 CPW 馈电 UWB,其中使用环形环来获得超宽带宽。S. Nicolaou 等人在 [11] 中讨论了一种 UWB 辐射器,其槽呈指数锥形,尺寸非常大,增益很小。[12] 介绍了一种非均匀辐射、小增益 UWB 偶极天线。它提供了较差且高度失真的脉冲响应。[13] 讨论了一种适用于医学成像应用的定向 UWB,尺寸非常大,辐射方向图不均匀。然而,上述所有天线尺寸都很大或结构复杂
多尺度实验 (SWARM-EX) 是由三颗立方体卫星组成的集群,将以综合方式探测赤道电离和热层异常(300 公里 - 600 公里)。• 卫星间距离从 0.25 公里到 1000 公里不等。• 这项探索任务具有科学、工程和教育目标。• 由大学牵头的与 6 所大学的合作项目
本文介绍了用于 5G 端射应用的 SICL 馈电宽带 MIMO 天线阵列。阵列中的辐射元件是一种改进的偶极天线,倾斜 ±45 度,以避免阵列配置中连续元件之间的重叠。一个臂放在顶部,而另一个臂放在底部基板上,分别由 SICL 线的顶部和中间板(使用馈电通孔)馈电。偶极天线臂的上下排列使阵列尺寸更加紧凑。SICL 技术的另一个优势是,当一个端口被激励时,可以减少另一个端口的耦合,从而使用 SICL 实现高隔离度。建议采用四元件 MIMO 天线阵列实现 360 度方位覆盖,增益为 6 dBi,阻抗带宽为 5.6 GHz,28 GHz 时交叉极化水平低于 13.6 dB。
摘要 —本文介绍了一种基于半圆柱槽结构的高增益宽带圆柱介质谐振器天线(CDRA)。采用半圆柱槽结构将 CDRA 的高阶 HEM 12 σ 模式与槽谐振模式相结合,实现具有高增益特性的混合辐射模式。为进一步提高天线的实现增益,在不增加水平尺寸和轮廓的情况下对称使用一对寄生金属面板。此外,通过同时使用 HEM 12 σ 模式和槽模式,提出的由微带-带状线馈电结构馈电的高增益宽带 CDRA 实现了 5.92 GHz 的宽带宽。此外,通过利用馈电结构底部作为反射器的作用,无需进一步改进设计即可提高实现的增益。最后,设计、制造并测量了演示原型。所提出的天线在 27 GHz 左右的 22.1% 分数带宽 (FBW) 上实现了 12.9dBi 的峰值增益。测量结果与模拟结果非常吻合。它是 5G 毫米波无线通信的良好候选者。
4 EV推进:电动机:电动推进系统的选择,EV推进系统的框图,EV电机的概念,单电机和多电机配置,固定和可变的齿轮传输,内轮电动机配置,EV电动机的分类,用于当前车辆应用中的电动机,用于当前车辆应用程序的电动机,EV Motors的EV Motors的EVERON EVERON和EVERICT EVIRES EVERON的比较:EV型电源的比较:电子转换器,四个象限DC切碎机,三台全桥电压馈电逆变器,软旋转EV转换器,硬转换和软旋转转换器的比较,三相电压馈电谐振DC链接DC链接DC链接,微控制器和控制策略的基础,
具有多轴推力矢量的纤维馈电脉冲等离子推力器 (FPPT) IEPC 2022-558 在第 37 届国际电力推进会议上发表 麻省理工学院,美国马萨诸塞州剑桥 2022 年 6 月 19 日至 23 日 Curtis A. Woodruff 1、Magdalena Parta 2、Darren M. King 3、Rodney L. Burton 4 和 David L. Carroll 5 CU Aerospace (CUA),美国伊利诺伊州香槟市 61822 摘要:CU Aerospace (CUA) 开发了同轴纤维馈电脉冲等离子推力器 (FPPT),具有多轴推力矢量能力,可为小型卫星实现高脉冲主推进任务。推进器子系统测试采用 1.7U 系统配置,配备 26 J 储能单元 (ESU),运行功率为 78 瓦 (3 Hz),平均推力为 0.60 mN,比冲为 3,500 s,效率为 13%。推进器性能随燃料进给率而变化。加速子系统寿命测试显示,电容器充电/放电循环次数超过 16 亿次,电流波形几乎相同。独立控制输入功率和推进剂进给率的能力允许调整推力水平和 Isp。迄今为止的测试表明,电磁推力矢量控制能力在俯仰和偏航轴上达到 ±10 度左右。此外,该系统还有可能提供对滚转轴的控制权。俯仰和偏航推力矢量控制性能与最近的推进器性能改进一起展示。一台总冲量为 28,000 Ns 的 1.7U FPPT 正在集成到 CUA 的 NASA 资助的双推进实验 (DUPLEX) 立方体卫星上,目前计划于 2023 年第一季度发射。FPPT 技术是一种极具吸引力的选择,可以满足许多微推进需求,包括延长轨道机动、防撞机动、深空任务、阻力补偿和脱离轨道。命名法