1 (a) 轨道发射尝试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 3 商业发射与政府发射.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 按所有者国家和类别发射的 2023 有效载荷 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 11 2014 年至 2023 年年底在轨碎片物体数量 . . . . . . . . . . . . . . . . . . . . . . . . . . 25 12 2014 年至 2023 年年底在轨物体质量(吨) . . . . . . . . . . . . . . . . . . 26 13 2023 年轨道发射及发射相关地球轨道碎片数量 . . . . . . . . . . . . . . . . 32 14 2023 年不受控制的再入 . . . . . . . . . . . . . . . . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 44 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . . 45 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 46 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 47 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 48 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 49 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . . 50 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . 51 2023 年发射的 19 颗 SSO 卫星,按降交点地方时排序 . . . . . . . . . 52 20 2023 年发射的地球静止卫星,按经度排序 . . . . . . . . . . . . . .53 21 GEO 数量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... .... .... 56
摘要。对 74 颗恒星进行了圆形光谱偏振观测,试图通过其光谱线中的纵向塞曼效应探测磁场。观测样本包括 22 颗正常 B、A 和 F 星、4 颗发射线 B 和 A 星、25 颗 Am 星、10 颗 HgMn 星、2 颗 λ Boo 星和 11 颗磁性 Ap 星。使用最小二乘反卷积多线分析方法(Donati 等人,1997 年),从每个光谱中提取了高精度斯托克斯 I 和 V 平均特征。我们完全没有发现正常、Am 和 HgMn 星中存在磁场的证据,纵向场测量的上限通常比以前为这些物体获得的任何值小得多。我们得出结论,如果这些恒星的光球层中存在任何磁场,这些磁场的排列顺序与磁性 Ap 恒星不同,也不类似于活跃的晚期恒星的磁场。我们还首次在 A2pSr 恒星 HD 108945 中检测到磁场,并对五颗先前已知的磁性 Ap 恒星的纵向磁场进行了新的精确测量,但没有在其他五颗被归类为 Ap SrCrEu 的恒星中检测到磁场。我们还报告了几个双星系统的新结果,包括 Am-δDel SB2 HD 110951 快速旋转次星的新 v sin i。
1 (a) 轨道发射尝试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 3 商业发射与政府发射 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 按所有者国家和类别发射的 2024 个有效载荷 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 11 2014 年至 2024 年年底在轨碎片物体数量 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 12 2014 年至 2024 年年底在轨物体质量(吨) . . . . . . . . . . . . . . . . . . 26 13 2024 年轨道发射及发射相关地球轨道碎片数量 . . . . . . . . . . . . . . . . 31 14 2024 年不受控制的再入 . . . . . . . . . . . . . . . . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 45 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 46 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 47 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 48 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 49 20 颗 2024 年发射的地球静止卫星,按经度排序 . . . . . . . . . . . . . . 50 21 GEO 卫星数量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1 (a) 轨道发射尝试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 3 商业发射与政府发射 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 按所有者国家和类别发射的 2024 个有效载荷 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 11 2014 年至 2024 年年底在轨碎片物体数量 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 12 2014 年至 2024 年年底在轨物体质量(吨) . . . . . . . . . . . . . . . . . . 26 13 2024 年轨道发射及发射相关地球轨道碎片数量 . . . . . . . . . . . . . . . . 31 14 2024 年不受控制的再入 . . . . . . . . . . . . . . . . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 45 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 46 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 47 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 48 19 颗 2024 年发射的 SSO 卫星,按降交点地方时排序 . . . . . . . . . 49 20 颗 2024 年发射的地球静止卫星,按经度排序 . . . . . . . . . . . . . . 50 21 GEO 卫星数量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
当作者偶然发现有关伽耶特黎真言的文献时,他/她发现,40 天内吟诵 125,000 次伽耶特黎真言并在内心聆听吟诵的声音被认为是一种特殊的修行,可以从吟诵伽耶特黎真言中获得巨大的益处。作者满怀希望,建议她的母亲也进行吟诵,她的母亲在 40 天内确实做到了,每天花大约 4 个小时,念诵 32 颗 Tulsi mala(一串 Tulsi 珠子),每颗 Tulsi mala 有 108 颗珠子,但为了计数目的,只取 108 颗中的 100 颗,以留出 8 颗用于发音错误。尽管作者的母亲在 40 天内完成了 125,000 次伽耶特黎真言的吟诵,练习了大约 160 个小时,但作者的母亲的记忆力却没有得到任何提高,这让她非常震惊。
本新闻稿中非历史性的陈述均属于《1995 年私人证券诉讼改革法》所定义的“前瞻性陈述”。前瞻性陈述包括但不限于以下陈述:我们的目标是为终末期器官疾病患者提供无限量的可耐受、可移植器官;我们期望其异种移植工作以及我们的科学合作者的工作将导致猪器官的常规使用,以帮助有需要的患者;我们计划启动米罗利韦 ELAP 的 1 期研究;我们的目标是为患者尚未满足的医疗需求进行创新并造福其他利益相关者,进一步实现我们的公共利益目的,即开发新型药物疗法和技术,以扩大可移植器官的可用性。这些前瞻性陈述受某些风险和不确定因素的影响,例如我们向美国证券交易委员会提交的定期报告中所述的风险和不确定因素,这些风险和不确定因素可能导致实际结果与预期结果存在重大差异。因此,此类前瞻性陈述符合我们向美国证券交易委员会提交的定期报告和文件中规定的警示性声明、警示性语言和风险因素,包括我们最新的 10-K 表年度报告、10-Q 表季度报告和 8-K 表当前报告。我们主张《1995 年私人证券诉讼改革法案》中对前瞻性陈述的安全港保护。我们截至 2024 年 3 月 26 日提供此信息,并且不承担由于新信息、未来事件或任何其他原因而更新或修改本新闻稿中包含的信息的义务。
尽管世界各地采取了限制措施,但每天感染和死亡的 COVID-19 人数仍然很高,令人难以忍受。在西方国家,死亡人数最多的是老年人:根据意大利国立卫生研究院 (Istituto Superiore di Sanità, ISS) 2021 年 3 月 17 日更新的公报,在意大利,因疫情死亡的约 102,010 人中,62% 的人年龄超过 80 岁。因此,疫苗接种活动优先考虑这一年龄群体,意大利该年龄群体的免疫接种于 2021 年 2 月 8 日星期一开始,但由于最初专门为这一群体提供的两种获批 mRNA 疫苗(辉瑞/BNT Biotech 和 Moderna)供应出现各种延误,接种工作遇到了困难。意大利的抗 SARS-CoV-2/COVID-19 疫苗接种战略计划因此经过数次调整 (1)。注册试验建议,mRNA 疫苗应分两剂接种,间隔 3-4 周:辉瑞/BNT Biotech 和 Moderna 在临床试验中预防有症状的 COVID-19 的有效率(临床试验中评估的保护率)分别为 94.8% 和 94.1%(2、3)。然而,当排除第一剂后 14 天内(对疫苗抗原产生有效免疫反应所需的时间)感染的病例时,相同的试验研究显示仅第一剂就有良好的有效率:辉瑞/BNT Biotech 和 Moderna 分别为 92.6%(4)和 92.1%(3)。以色列最近的一项研究还估计,首剂疫苗在减少有症状的 COVID-19 病例方面的有效性(在现实世界中评估的保护作用,通常低于疗效)为 85%(95% CI 71–92)(5)。该数据是
• PanopticAI 的技术将智能手机和平板电脑变成医疗级生命体征监测仪。 • 这是这家总部位于香港的初创公司实现确保可及性和可扩展性医疗保健使命的重要里程碑。 • 这项基于人工智能的技术用途广泛,包括远程医疗、远程患者监测、社区健康筛查、分散临床试验和个人健康。 • PanopticAI 的早期采用者包括香港鹰阁医院(IHH Healthcare 旗下医院)、万宁(香港领先的保健和美容连锁店)和保柏(跨国健康保险公司)。 (香港,2025 年 1 月 26 日) - 远程患者监测领域的领先创新者 PanopticAI 今天宣布,其非接触式生命体征监测软件已获得美国食品药品监督管理局 (FDA) 的 510(k) 批准。PanopticAI Vital Signs 应用程序是首个获得 FDA 批准的移动应用程序,可使用 iPhone 和 iPad 的内置摄像头进行非接触式脉搏率测量。这也使 PanopticAI 成为第一家获得 FDA 批准的软件即医疗器械 (SaMD) 的香港公司。PanopticAI 的技术利用专有的远程光电容积描记法 (rPPG) 算法,将随处可见的智能手机和平板电脑转变为医疗级生命体征监测仪。先进的人工智能和信号处理技术用于分析设备摄像头捕捉到的皮肤细微颜色变化,在短短 30 秒内准确测量脉搏率等生命体征。此次 FDA 批准代表着 PanopticAI 让医疗保健更易于获得和可扩展的使命的一个重要里程碑。通过利用智能手机的普及,PanopticAI 的技术消除了对专用设备的需求,大大降低了成本,并扩大了更广泛人群获得生命体征监测的机会。该公司的非接触式生命体征监测技术已被医院、保险公司和药房使用。其客户包括香港鹰阁医院(全球最大的医疗服务提供商之一 IHH Healthcare 旗下子公司)、万宁(香港领先的健康美容连锁店)和保柏(跨国健康保险公司)。临床测试针对反映美国人口普查数据的多样化患者群体进行,以确保 PanopticAI Vital Signs 应用程序在广泛用户中的准确性和可靠性。严格的非临床测试评估了该应用程序在各种条件下的性能,包括不同的照明、距离和用户特征,以确保在现实环境中可靠运行。PanopticAI Vital Signs 应用程序还经过了严格的网络安全和人为因素测试,以确保患者安全和易用性。“我们很高兴我们的技术获得 FDA 批准,这证明了我们致力于开发临床上合理、可访问的健康解决方案的承诺,”PanopticAI Vital Signs 首席执行官兼联合创始人 Kyle Wong 博士表示。
在商业空间领域,SpaceX 和 OneWeb 都开始在低地球轨道部署巨型卫星星座,以在全球范围内提供高速互联网接入。OneWeb 于 2019 年 2 月发射了首批六颗卫星,SpaceX 于 2019 年 5 月发射了首批 60 颗卫星。此后,两家公司都进行了更多发射,SpaceX 在 2020 年初开始稳步部署。截至 2020 年 2 月 17 日,SpaceX 共发射了 302 颗 Starlink 卫星,其中 297 颗已投入运营。相比之下,2019 年低地球轨道的运行卫星总数约为 1,500 颗,到 2020 年底,这一数字可能会翻一番。这些商业发展为本已多样化、颠覆性、无序性和危险性的太空环境带来了机遇和挑战。
7天前 - 为招募优质人才加入国军,国防部昨日起。展开一连22天114年军校招生「菁英专案」活。动,邀请全国高中职学生参访陆、海、空三。军官校;首曰活动安排参访陆军官校,并安。排合理...