马克斯普朗克人类发展研究所成立于 1963 年,致力于研究人类生命周期和历史时期的发展和教育过程。除了在学校和其他机构环境中学习之外,研究所的研究人员还探索人类发展如何受到身体和认知因素、社会环境、环境和时代精神的影响。研究团队调查的问题包括“我们如何在年老时保持心理健康?”,“环境对我们的大脑、行为和心理健康有何影响?”,“儿童如何学习?”,“人类情感如何受到历史的影响,它们如何继续塑造历史?”,“我们如何在日益复杂的世界中做出正确的决定?”,“数字化给社会带来了哪些挑战,我们如何才能最好地应对这些挑战?”来自不同学科的研究人员——包括心理学、社会学、历史、计算机和信息科学、医学、
气体中辐射的吸收和发射本质上是量子力学过程。分子中离散能级的存在是原子尺度系统量子特性的体现。基态是唯一的稳定状态,而任何激发态分子即使不受干扰,一段时间后也会通过跃迁到基态或其他较低状态来降低其内部能量。激发态的一般瞬态特性与状态能量的不确定性有关,如海森堡不确定性关系所示。因此,在两个确定的量子态之间跃迁期间发射的光子的能量也是不确定的,跃迁能量统计分布在与这两个状态相关的中心能量周围。
哈佛·洛马克斯 (1922-1999) 哈佛·洛马克斯是计算流体力学 (CFD) 领域的先驱,他将有限差分技术应用于大规模并行计算,加速了该领域的发展。从 1944 年到 1994 年,他的研究生涯长达 50 年,奠定了 NASA 艾姆斯研究中心在该领域的领导地位。高层管理人员认识到洛马克斯工作的理论和实践潜力,将 CFD 确立为实验室的战略方向。他们为艾姆斯研究中心带来了许多在洛马克斯指导下精通计算机的空气动力学家。20 世纪 70 和 80 年代,随着管理层为研究人员提供的计算机能力不断增强,CFD 在艾姆斯研究中心也不断发展,使得数值风洞取代真实风洞成为评估气流的主要方法。洛马克斯对 CFD 的主要贡献是计算了飞机在达到音速时周围的非稳定气流。洛马克斯并不是 CFD 的发明者。该领域的创始人应归功于约翰·冯·诺依曼,他在二战后在洛斯阿拉莫斯国家实验室从事有限差分技术研究。1 此外,埃姆斯的其他理论家,包括米尔顿·范戴克、弗兰克·富勒和比尔·默斯曼,对流体流动的计算工作都早于洛马克斯。然而,当其他人还在计算亚音速和超音速流动的影响时,洛马克斯已经解决了最复杂流动的方程,这为
1900 年 12 月 14 日,马克斯·普朗克向德国物理学会提交了他对黑体辐射分布定律的推导,能量量子的概念首次出现在物理学中。考虑到量子理论产生的巨大影响,令人惊讶的是,很少有人关注普朗克迈出引入量子的第一步的推理的详细研究。当然,文献中有许多关于量子理论起源的描述,但几乎所有这些描述在历史上都是不准确的、缺乏批判性的,而且对于普朗克自己的工作及其背景都具有很大的误导性。我们确实有普朗克的回顾性记述[1],这些记述清晰而一致地描绘了他自己对这一发展的看法,还有罗森菲尔德[21]的一篇关于量子理论早期的优秀专著,该书对普朗克的工作进行了恰当的历史背景介绍,但鲜为人知。在我看来,如果我们要充分理解普朗克决定性一步的性质,以及它在多大程度上标志着与先前思想的真正决裂,仍然有两个关键问题必须回答,这两个问题并非毫无关联。第一个问题实际上是一个历史问题:普朗克是否知道瑞利推导出的辐射分布定律是经典物理学的必然结果?大多数作者对这个问题的回答是肯定的,并将普朗克引入量子描述为他对经典理论与实验结果不一致以及经典理论在“紫外灾变”中表现出的内部失败所带来的“危机”挑战的回应。事实上,根本没有这样的危机,或者说根本没有意识到这样的危机。1900 年夏天之前,所有关于黑体辐射的研究都是在不了解古典物理学对这个问题意味着什么的情况下进行的。直到 1900 年 6 月,瑞利勋爵才发表了一份两页的说明,其中首次推导出古典分布定律,瑞利论文的非常严重的意义在相当长一段时间内才被普遍认识到。普朗克在 1900 年和 1901 年的论文中没有提到瑞利的说明,在多年后发表的关于量子理论起源的论述中也没有提到瑞利。然而,普朗克似乎知道瑞利的工作,但他并不认为它比他对大约在同一时间发表的其他几篇论文更有意义,在这些论文中,或多或少地尝试了临时方法。