线粒体 DNA 核苷的规则分布对于线粒体功能和基因组遗传至关重要;然而,其潜在机制仍然未知。我们的数据显示,线粒体经常发生自发和可逆的珠化——一种生物物理不稳定性,其中小管起伏成规则间隔的珠子。我们发现珠化具有特征性的长度尺度,同时介导核苷解聚并以接近最大可实现的精度建立核苷间距离。嵴内陷起着双重作用:层状嵴密度决定了珠化频率和持续时间,并在恢复后保留了由此产生的核苷间距。因此,线粒体基因组的分布从根本上受自发珠化和嵴超微结构之间相互作用的支配。
抽象动态模式分解(DMD)及其变体(例如扩展DMD(EDMD))广泛用于将简单的线性模型粘贴到可观察到的可观察数据中已知的动态系统中。在多种情况下dmd meth-ods效果很好,但在其他情况下表现较差,因此需要对DMD的假设进行澄清。在更仔细的检查过程中,基于Koopman操作员的DMD方法的现有解释并不令人满意:它们在假设下仅对通用可观察物的概率为零证明DMD是合理的。在这里,我们为DMD作为局部的,前阶还原模型的拟合方式,用于在具有概率的条件下,对于通用可观察到的概率和非分类观察数据。我们通过在吸引缓慢的频谱子歧管(SSM)中构造其主导动力的线性化转换来实现这一目标,并用于有限的或有限维度的周期强制系统。我们的参数还导致了一种新的算法,数据驱动的线性化(DDL),它是慢速SSM中可观察动力学的高阶,系统的线性化。我们通过示例显示
在过去的几年中,机械杂草控制已成为一种更有效,更经济的方法。本研究提出了电子驱动源的概念和除草机制,以在30 cm的间距上进行作物行进行除草作业。针对沙质壤土条件设计,开发和评估了一个电子驱动的机械排间除草机。结果表明,操作速度和除草型鼓直径在1%和5%的显着性水平下显着影响功耗和除草效率。在3 km/h的工作速度下,观察到平均除草效率,现场容量,现场效率和植物损伤为91.68%,0.049 ha/h,而3.18%。观察到除草剂的平均功耗为189 W.开发除草剂的田间容量是轮ho头的3-4倍,从而降低了所需的人力和运营成本。用鼓和工具组合的除草机制降低了杂草逃生的机会并提高除草效率。此外,除草剂的电子驱动系统大大降低了振动,从而提高了操作员的工作效率。总体而言,开发的电子驱动除草剂有可能成为小型农民的有效工具,以较少的繁琐手术和更高的效率进行除草作业。
聚合物驱动材料的各向异性一维收缩运动引起了从软机器人到仿生肌肉等领域日益增长的兴趣。尽管光驱动液晶聚合物(LCP)是实现远程和空间触发收缩(<20%)的有希望的候选者,但开发具有超大收缩率的 LCP 系统仍然存在许多挑战。这里提出了一种结合形状记忆效应和光化学相变的新策略,在一种新设计的线性液晶共聚物中实现了高达 81% 的光驱动收缩,其中偶氮苯和苯甲酸苯酯的共晶液晶原自组织成近晶 B 相。重要的是,这种高度有序的结构作为开关段牢牢锁住了应力诱导的应变能,该能通过可逆的反式 - 顺式光异构化迅速释放,从而破坏层状液晶相,从而导致这种超大收缩。纤维作为光驱动的构建块,可以实现精确的折纸,模仿“破损”蜘蛛网的恢复,并筛选不同尺寸的物体,为光驱动 LCPs 从仿生机器人到人类助手的高级应用奠定了新的基础。