Chilwee BG(黑金)系列高能量VRLA电池是基于石墨烯技术专门设计的,显然可以改善电池的容量,输出功率,循环寿命和高温性能。Chilwee BG(黑金)系列提供了更长的范围,更大的功率和极长的动力应用程序,即电动自行车,电动三轮车,电动摩托车和其他设备需要直流电源。
Chilwee超级石墨烯2023系列高能量电池是专门设计的,基于超级石墨烯技术的热温,显然可以改善电池的容量,输出功率,循环寿命和高温性能。Chilwee石墨烯2023系列提供快速充电;更长的范围,更大的力量和极长的动力应用寿命,即电动自行车,电动三轮车,电动摩托车和其他设备需要直流电源。
高强度铝合金,包括 2xxx、6xxx 和 7xxx 合金,在高温下强度较低,这是因为热暴露后沉淀物会粗化[7 和 9]。最近的研究报告称,由于 α-Al(MnFe)Si 弥散体的析出,3xxx 合金在室温和高温下均具有优异的力学性能[10 和 13]。α-Al(MnFe)Si 弥散体与基体部分共格,具有立方晶体结构[10,14]。有趣的是,α-Al(MnFe)Si 弥散体在 300℃ 时具有热稳定性,这提高了高温强度和抗蠕变性[12,13]。曾尝试通过添加合金元素和/或各种热处理来优化α-Al(MnFe)Si弥散体的特性,以期改善3xxx合金的高温力学性能[11、13、15和19]。刘和陈[12]报道,在375℃下加热48小时的一步法热处理促使大量α-Al(MnFe)Si弥散体析出,从而在300℃下实现3004合金的峰值弥散强化。后来,发现与在375℃下加热48小时的一步法热处理相比,在250℃下加热24小时和在375℃下加热48小时的两步法热处理可显著改善弥散体的特性以及300℃下的屈服强度和抗蠕变性[17]。李等人。 [13]研究了添加不同量的Si和Mg对3xxx合金组织和高温性能的影响,发现当Si含量为0.25wt.%、Mg含量为1.0wt.%时,α-Al(MnFe)Si弥散相的高温强化效果最好。刘等[16]研究发现,在Al-Mn-Mg 3004合金中添加0.3wt.%Mo可细化弥散相,并提高其在350℃以下的热稳定性。由于Fe、Si和Mn等合金元素在凝固过程中发生偏析,在沉淀热处理过程中,枝晶间区域总会形成无弥散相区(DFZ),从而降低弥散相的体积分数,降低合金的高温性能[11e13]。因此,在采用弥散强化时,必须尽量减少 DFZ。添加具有负偏析(ko > 1)的元素是减少 DFZ 数量的有效方法。据报道,Mo 可以最大限度地减少不同 Al 合金中 DFZ 的形成 [16,20,21],从而使弥散体的体积分数较大且分布均匀,最终获得更优的高温性能。尽管之前的研究报告显示弥散体强化可以使 Ale Mne Mg 3xxx 合金的高温性能得到显著改善,但大多数研究都局限于铸锭。事实上,工业工程零件通常需要材料经历大的塑性变形才能满足特殊的形状和性能要求。此外,热轧或挤压也能消除铸造缺陷,如夹渣、孔隙等,进一步改善材料性能[22e25]。张等[26]研究发现,室温预轧显著促进了纳米弥散相的形核,增加了Al-Mn-Si合金中弥散相的数量密度。但室温变形会增加开裂的风险,从而增加制造难度[27]。因此,有必要研究热变形工艺对弥散相组织及其相关力学性能的影响。
由于与其他电源存储方法相比,其每单位质量高能量,因此锂离子电池目前在大多数便携式消费者小工具1(例如手机和笔记本电脑)中使用。它们还具有高功率与重量比,出色的高温性能和最小的自我释放。锂离子(液化)电池在近几十年以来,作为各种应用的可行动力来源,包括电动汽车和混合动力汽车,电网和太阳能储能。li-ion电池被广泛推荐为扩展驾驶范围和快速加速的电源。li-ion电池在快速充电期间产生热量,并在高电流水平下排放周期。此外,温度和不均匀性对其储能能力和耐用性有重大影响。
•内置的保护,过度电荷,过度递减和过度过度。•高循环寿命和服务寿命。•高性能锂细胞。•带有多个逆变器品牌软件预加载的高级BMS。•CAN&RS485巴士,与领先的逆变器品牌(Victron,Deye,Sunsynk,Growatt,Solis,Solis,Goodwe,Goodwe,luxpower,luxpower,Oust,voltronic,SMA等)完全集成和通信。•出色的高温性能。•高能量密度和转化效率。•低自我排出。•包括墙支架的简易壁挂式安装座。•重型侧柄,可轻松处理。•正式和负端子的双连接点,以更轻松的电源电缆安装。•可以平行BMS通信最多8个单位
描述:127-45 是一种芯片粘接粘合剂,专为高可靠性性能和高效率生产而设计。该产品是一种注射器分配式、各向异性导电、单组分、100% 固体环氧粘合剂,具有出色的热稳定性、出色的耐化学性和出色的高温性能。应用包括粘合镀金基板和锡/铅焊料端接组件、芯片粘接操作、印刷电路板制造、先进材料复合材料、密封和高性能涂层。127-45 是 Electraset™ 620 的各向异性导电版本。特性:粘度 (cps) 20,000 触变指数 > 4.5 填料银体积电阻率 X、Y、最小值 (Ω-cm) 1 X 10 16 Z (Ω-cm) 0.001
摘要 高 Jc 镍基高温合金在航空航天、海洋、核能和化学工业中得到广泛应用,这些工业领域需要具有出色的抗腐蚀和抗氧化性能、优异的机械性能和出色的高温性能。然而,由于这些合金的化学性质复杂,基于选择性激光熔化 (SLM) 的高 Jc 镍基高温合金的增材制造 (AM) 面临重大挑战。这些材料具有多种合金元素和较高的铝+钛含量,当通过 SLM 固结时会形成各种二次相,严重影响可加工性,导致裂纹的形成。本综述的目的是总结迄今为止在高 Jc 镍基高温合金 SLM 方面取得的进展,特别强调阐明该合金系统中加工、微观结构和性能之间的关系。关键词:高 Jc 镍基高温合金、增材制造、选择性激光熔化 (SLM)、加工、微观结构、力学性能
收到:03.08.2023;修订:30.01.2024;接受:28.05.2024摘要:近年来,由于其出色的特性,沥青修饰的纳米材料已变得广泛。石墨烯及其衍生物是其中的重要例子。因此,进行了这项综述研究,以详细评估石墨烯对沥青的影响。因此,通过研究文献研究,给出了有关石墨烯及其衍生物的一般信息,并评估了石墨烯改装沥青的制备条件。然后,研究了石墨烯对沥青物理和流变学特性的影响。此外,研究了石墨烯修饰对沥青混合物性能的影响以及在复合修饰中使用石墨烯的影响。因此,确定石墨烯可以改善沥青的高温性能,但其对沥青的低温和疲劳性能的影响大多可以忽略不计。另外,已经确定石墨烯会增加沥青混合物的发情电阻,并积极影响沥青混合物的开裂性。
表面积和石墨纳米片的表面积以及粒径对沥青粘合剂Dineshkumar sengottuvelu的修饰,* hashem khalem khaled almashaqbeh,* Mohammed,* Mohammed,Avijit Pramanik,Avijit Pramanik,Grace rushan,Sase ryy,SASE RASEN,SASE RASEN,SASER CHAREN,SASER, G. ucak- Astarlioglu,艾哈迈德·阿斯塔兹(Ahmed al-Ostaz)*摘要:氧化石墨烯(GO)对其独特的物理和化学特性引起了极大的关注。go在包括生物医学,电子,能源和环境在内的广泛领域中找到了应用。它在土木工程中的基础设施材料(例如沥青和水泥)的修饰中也起着重要作用。在这项研究中,我们使用改进的鹰嘴豆菌的方法报告了GOS(GR)粉末和石墨烯纳米片(GNP)的GOS合成。我们广泛研究了GR和GNP前体的粒径和特定表面积对其氧化的影响,这些作用尚未在文献中解决。来自傅立叶转换红外(FTIR)和X射线光电子光谱(XPS)分析的结果表明,由较大的表面积和小尺寸的GR粉制成的GO具有较高的氧化程度,约为9.8%的羧基官能团。这为与不同分子(包括沥青成分)的相互作用提供了更多机会。在这方面,我们通过旋转粘度,流变学,多重应力蠕变和恢复(MSCR)以及抗老龄化性能测量结果研究了富含羧基的GO(较高氧化百分比)对沥青粘合剂高温性能的影响。我们的实验结果表明,从GR粉末前体(指定的OX-GR)获得的GO可以显着改善沥青粘合剂的高温性能。例如,在高温下,仅引入2 wt。%的%进入性能等级沥青粘合剂(PG 67-22)可以大大增加其复杂的剪切模量(G*),并减少相角(δ)。MSCR测试表明,加入沥青粘合剂的添加有效地减轻了其永久性变形并改善了其弹性反应,这证明了蠕变合规性(𝐽𝐽𝑛𝑛𝑛𝑛)的降低约39%,而Go-Modiedified Binder的恢复百分比(𝜀𝜀𝜀𝜀)的恢复百分比(𝜀𝜀𝜀𝜀)增加了297%。此外,测得的粘度衰老指数和G*的G*比率证实了GO在粘合剂抗衰老特性改善的显着影响。关键字:石墨,石墨烯纳米片,石墨烯氧化物,悍马方法,沥青粘合剂,流变
Elementum 3D 利用创新的反应性增材制造 (RAM) 技术引入了新的商用铝合金和高性能金属基复合材料,以与现有的增材制造设备配合使用。RAM 利用放热化学反应在增材熔合过程中原位合成产品材料。RAM 工艺可用于生产各种材料,但特别适合通过反应性合成陶瓷增强材料来生产陶瓷增强金属基复合材料 (MMC)。该工艺可以从针对工艺流程和铺展性进行了优化的较大 AM 原料粉末中合成亚微米陶瓷增强材料。亚微米增强材料还可在合金凝固过程中充当成核剂,以产生有利的细粒等轴铝微观结构。通过成核细等轴微观结构,该工艺克服了困扰许多铝合金的热裂性问题。通过少量合成陶瓷,2024 和 6061 等合金变得可打印,并且性能与锻造合金相当。增加陶瓷含量可提高强度、模量、耐磨性和高温性能,同时降低热膨胀系数和延展性。