遗传和表观遗传调控生物标记在植物抗逆分子机制和作物育种方法中起着至关重要的作用。由于不利的生长条件阻碍了作物产量和全球粮食安全,养活不断增长的全球人口是一项艰巨的任务。为了很好地解开上述机制,科学家们不得不整合多个植物研究领域,因此,他们必须具备丰富的生物信息学知识和工具来管理大数据集。从本质上讲,本主题中包含的常规文章涉及农民和股东面临的现代问题。为了解决这些问题,科学家们采用了多方面的研究方法,涵盖植物生理学、分子生物学、遗传学、表观遗传学和组学等各个领域,以及最先进的植物科学和尖端方法,这些方法由复杂的技术和先进的方法提供支持,包括全基因组关联研究 (GWAS) 和表观遗传学方法,以揭示植物对高温、盐分、干旱和病原体侵袭等胁迫(生物和非生物)的耐受机制。因此,可以将进化的分子技术投入到未来的作物育种策略中,以提高生产力并产生更能抵御环境挑战和抵抗病原体侵袭的新品种。值得注意的是,Kumar 等人通过两种不同的方法揭示了遗传可塑性的分子基础对水稻种植中不同环境条件的关键重要性。本专题汇集了新发现和有用方法来促进植物科学研究。它阐明了表观遗传学变化(例如 DNA 甲基化、组蛋白(去)乙酰化和其他翻译后修饰 (PTM))在基因调控(抑制或诱导)中的作用,以及组学(基因组学、表观基因组学、转录组学、代谢组学、离子组学和蛋白质组学)在检测应激反应基因中的作用。使用
第二单元:高等植物多样性和低等动物多样性 高等植物多样性:一般特征、繁殖、裸子植物的分类、裸子植物和被子植物的生活史、植物命名的显著特征、裸子植物和被子植物的经济意义。 低等动物多样性:一般特征、各种原生动物群的分类、多孔动物、腔肠动物、蠕虫、环节动物、节肢动物、软体动物和棘皮动物。海绵中的管道系统、海绵的多态性、不同的幼虫、珊瑚礁的分类、形成机制和意义。
细长的番茄果实 Xiao 等人 (2008) 圆形或皱褶的豌豆(孟德尔) Ellis 等人 (2011) 高等植物之间交换的 2 百万个转座子 El Baidouri 等人 (2014)
制造有用的产品,可能是藻类、真菌、酵母细菌、病毒、高等植物和动物的细胞或它们的子系统或从生物物质中分离出的成分 - 它包括扩大生物过程
摘要。高等植物的雄性不育现象是除雄蕊早熟、雌蕊早熟、异花柱(柱头不同)和自交不亲和性之外,迫使外部授粉的进化条件机制之一。由于消除了耗时且成本高的母系去雄过程,雄性不育系成为包括玉米在内的许多植物物种杂交品种种子生产中令人感兴趣的对象。使用雄性不育系进行杂交品种种子生产需要建立在不同环境下雄性不育的母系和具有育性恢复基因的合适父系。本文总结了玉米雄性不育和育性恢复遗传学方面的研究成果。
在生物学和物理科学中微重力研究的重要性这一基本的生物学和物理科学研究是进入创新的生物学和技术突破的渠道。例如,通常植物的根源向下生长,在那里他们很容易吸收水和养分进入土壤。在太空中,根部朝各个方向生长,水和其他必要的植物食品漂浮。与植物在太空中的研究致力于系统研究,这些研究探讨了高等植物生活中各个阶段重力扮演的作用。研究的重点是重力与其他环境因素与植物系统的相互作用,并使用超重力,模拟的低重力和微重力作为提高植物生物学基本知识的工具。研究结果为进一步的人类探索空间的努力做出了贡献,并通过在医学,农业,生物技术和环境管理中的应用来改善地球上的生活质量。
在高等植物中,GABA 主要通过一条称为 GABA 分流的短途径代谢,谷氨酸脱羧酶(GAD)催化谷氨酸不可逆脱羧生成 GABA 5,6。GAD 具有一个额外的 C 末端残基,称为钙调蛋白(CaM)结合结构域(CaMBD)。体外研究表明,低 pH 或 Ca 2+ /CaM 与 CaMBD 结合可刺激 GAD 活性 7,8,9。此外,转基因研究表明,去除 CaMBD 会导致植物中 GABA 积累更高 10,11,12,13。因此,人们认为在没有 Ca 2+ /CaM 的情况下,CaMBD 充当负调节/自抑制结构域,并且通过 Ca 2+ /CaM 与 CaMBD 结合可解除负调节。因此,我们的目标是通过 CRISPR(成簇的规律间隔的短回文重复序列)/Cas9 去除 CaMBD
p lant g enetics -genbt044n s emester:f所有e CTS:3 r equirement:e xam d escription:学生将学习在生物细胞中携带生物学信息的分子的结构和作用,在生命细胞,组织和遗传性材料的复制中。他们了解高等植物的遗传结构和功能。细胞周期的阶段以及植物有丝分裂和减数分裂的过程及其遗传后果,特别着重于遗传变异性的来源,与锁植物双重施肥有关的宏观和微孢子的形成。Mendel所描述的遗传的基本定律在园艺植物中进行了说明,其次是Mendelian以外的其他遗传过程的例子,并以园艺植物的例子进行了说明。我们将回顾多倍体植物如何在园艺生产,进化,它们的遗传后果,多倍体类型及其潜在用途中重要。
蓝细菌是最早在生态系统功能中起着至关重要的作用的生态系统的生物之一,包括C和N固定,营养循环和与高等植物和其他在全球规模上影响过程的生物体的养分循环和有益的相互作用。蓝细菌由于其动力和适应性而在工业,恢复和农业实践中也具有潜力。然而,蓝细菌生理和微生物学的最新发展表明,作为生态系统工程师的蓝细菌的基本知识存在差距。在其功能以及土壤特征,与其他生物(例如植物(例如植物)的相互作用)以及人类利益的代谢能力的相互作用中,需要进行更深入的研究。我们欢迎提交原始研究文章,建模,沟通,全面评论,评论或观点。感兴趣的主题包括但不限于对陆地蓝细菌生理学,生态学和基因组学以及它们在恢复,农业和工业中的使用。还鼓励对极端或研究的环境进行多样性研究。
本综述重点介绍了各种生物技术的优势,并介绍了它们如何通过使用 CRISPR Cas9 基因编辑技术操纵细菌、藻类、真菌和高等植物的遗传内容来提高其生物燃料产量。CRISPR-Cas 9 或规则间隔的短回文重复序列的蛋白质簇是迄今为止在基因组特定位置进行基因编辑的最基本、最有效的工具。通过采用 CRISPR-Cas9 机制的基因敲除技术,生物燃料的多样化得到了改善。CRISPR-Cas9 也成为改变生物体代谢途径和基因组以生产工业生物燃料的首选技术。它继续分析微生物对生物燃料生产的贡献以及基因组编辑技术,以提高某些物质的生产,包括转基因藻类、酵母和细菌以提高产量。由于燃料需求的不断增加和全球变暖的挑战,这种生物燃料生产的必要性是有原因的。该评论总结了与所使用的基因工程技术有关的该领域研究范围的最新趋势。