1国立核物理研究所,费拉拉部分,意大利费拉拉2个物理与地球科学系,费拉拉大学,费拉拉大学,费拉拉,意大利费拉拉3国立核物理研究所,弗拉斯卡蒂国家实验室,意大利弗拉斯卡蒂国家实验室,意大利4号国家核物理学,米兰比科卡,米兰比科卡5号国立核物理学6核问题研究所,白俄罗斯州立大学,明斯克,白俄罗斯7,瑞士日内瓦8 Cern 8国立核物理研究所,莱格纳罗的国家实验室,意大利莱纳罗9号物理与天文学系,Padua大学,Padua,Padua,Padua,Padua,意大利,ITALY 10院校,10级,北意大利大学。保加利亚11物理技术学院,武汉大学,武汉,中华人民共和国12 WHU-NAOC天文学联合中心,武汉大学,武汉,中华人民共和国,中华人民共和国13米兰大学,米兰州立大学,米兰,意大利米兰大学,意大利14号。美国弗吉尼亚州费尔法克斯乔治·梅森大学物理与天文学,美国15国立核物理研究所,都灵分区,都灵,都灵,意大利都灵,都灵,都灵大学,都灵大学,都灵,都灵,意大利都灵大学17国家核物理研究所
摘要:纳秒电磁脉冲对人类健康,尤其是在人类细胞中形成自由基的影响,是持续研究和正在进行的讨论的主题。这项工作介绍了对人间充质干细胞中单个高能电磁脉冲对形态,生存能力和自由基产生的影响的初步研究(HMSC)。将细胞暴露于单个电磁脉冲中,电场幅度为〜1 mV/m,脉冲持续时间约为〜120 ns,由600 kV的马克思发生器产生。分别使用共聚焦荧光显微镜和扫描电子显微镜(SEM)检查暴露后2小时和24小时的细胞活力和形态。用电子顺磁共振(EPR)研究了自由基的数量。显微镜观测和EPR测量表明,与对照样品相比,对高能电磁脉冲的暴露均未影响产生的自由基的数量,也没有在体外的HMSC形态。
国防部向高能激光器扩展计划额外投资 4700 万美元 2020 年 4 月 10 日,国防部选定通用原子公司作为第三家总承包商,与之前选定的总承包商洛克希德马丁公司和 nLight/Nutronics 一起为高能激光器扩展计划 (HELSI) 建造高能激光器。每家开发商将使用独特的技术方法生产一个 300 千瓦级高能激光 (HEL) 源原型,其架构可扩展到 500 千瓦或更高。重点是满足多军种/机构对 HEL(高能激光器)改进的共同需求。根据《国防战略》对定向能等现代化优先领域的关注,HELSI 计划资助定向能武器 (DEW) 的先进技术开发,旨在将广义军事问题的技术解决方案转化为经过验证的性能回报,例如增强的可支持性、更高的可负担性和更高的杀伤力。 DEW 系统具有许多潜在优势,包括光速到达目标、高精度、深弹匣、每次击杀成本低以及后勤要求低。HELSI 通过专注于提高输出功率、改善目标能量输送以及开发高效的功率和热管理方案来支持定向能武器能力的提高。这些进步将使整个国防部的高能激光项目受益。奖项颁发给了以下人员:
摘要:缺乏针对DNA对带电颗粒辐射的电子激发反应的分子级别的理解,例如高能质子,仍然是推进质子和其他离子束癌疗法的基本科学瓶颈。尤其是,不同类型的DNA损伤对高能质子的依赖性代表着重要的知识空隙。在这里,我们使用大量平行的超级计算机采用第一原理实时依赖时间依赖性密度函数理论模拟,以揭示从高能质子到水中DNA的能量传递的量子力学细节。计算表明,质子在DNA糖 - 磷酸侧链上的沉积能量明显多于核仁酶,并且预期在DNA侧链上的能量转移大于水。由于这种电子停止过程,在DNA侧链上产生了高能孔,作为氧化损伤的来源。
几十年来,露天焚烧和露天爆破(OB/OD)一直被用于处理/销毁高能危险废物。“高能”是指一类能够释放大量化学能的物质,例如军用弹药、烟花和汽车安全气囊推进剂。与封闭式替代技术相比,OB/OD 是一种不受控制的处理技术。1 与能够在释放前捕获和处理残留副产品的技术相比,高能危险废物的 OB/OD 是在露天进行的,处理副产品会直接排放到环境中(图 1)。因此,通过排放颗粒物、不完全燃烧产物或爆炸物块,以及散布弹药和其他废弃物(排泄物)2 而造成的 OB/OD 相关污染和暴露,引发了人们对是否有可用于高能危险废物的替代处理技术的质疑。为了履行 EPA 监控 OB/OD 安全替代品持续开发进展的承诺,3 本报告介绍了已开发的替代处理技术,这些技术在许多情况下已被采用,可考虑替代 OB/OD。
简介:超高能(UHE;≳ 10 16 eV)天体物理中微子具有巨大的发现潜力。它们将探测超高能宇宙射线的加速器,超高能宇宙射线的探测能量最高可达 ∼ 10 20 eV。与在宇宙微波背景上向下散射并在磁场中偏转的宇宙射线不同,探测到的中微子将指向其来源。超高能中微子-核子相互作用探测对撞机能量尺度以上的质心能量,从而可以进行灵敏的新物理测试。为了充分利用超高能中微子的科学潜力,我们最终需要一个具有足够曝光度的天文台,即使在悲观的通量情景下也能收集高统计数据。当超高能中微子在物质中相互作用时,它们会产生相对论性粒子级联,以及由于相对论性粒子能量损失而产生的非相对论性电子和原子核尾迹。冰中的时间积分级联轮廓是一个长度约 10 米、半径约 0.1 米的椭圆体。几乎所有的主要相互作用能量都用于介质的电离。来自单个级联电子和正电子的非相干光学切伦科夫辐射可以在 TeV–PeV 探测器(如 IceCube [1])和类似实验 [2–4] 中探测到。然而,由于中微子谱急剧下降,拟议的后继者 IceCube-Gen2 [5] 的光学探测率太小,不足以成为合适的超高能天文台。已经提出并实施了几种更有效的技术来探测来自超高能中微子的级联。首先,级联中净电荷不对称产生的相干射频辐射(阿斯卡里安效应 [6])已在实验室中观测到 [7],并且是过去 [8]、现在 [9–11] 和拟议 [12, 13] 实验的焦点。由于冰中无线电的透明性 [16–20],无线电方法(详见参考文献 [14, 15])可以比光学探测器更稀疏地测量大体积 [16–20],从而使得大型探测器的建造更具成本效益。其次,τ 中微子与地球相互作用,可以产生 τ 轻子(携带大部分原始 ν τ 能量),该轻子离开地球并在空气中衰变,产生 cas-
我们小组率先在 LHC 的高能物理分析中使用量子机器学习 (QML)。我们已在门模型量子计算机模拟器和硬件上成功将几种 QML 分类算法应用于 ttH(与顶夸克对相关的希格斯粒子生成)和希格斯粒子到两个μ子(希格斯粒子与第二代费米子的耦合)这两项最近的 LHC 旗舰物理分析。模拟研究已使用 IBM Quantum Framework、Google Tensorflow Quantum Framework 和 Amazon Braket Framework 进行,并且我们已实现良好的分类性能,其性能类似于目前在 LHC 物理分析中使用的经典机器学习方法,例如经典 SVM、经典 BDT 和经典深度神经网络。我们还使用 IBM 超导量子计算机硬件进行了研究,其性能令人鼓舞,并且接近 IBM 量子模拟器的性能。此外,我们将研究扩展到其他 QML 领域,例如量子异常检测和量子生成对抗,并已取得一些初步成果。此外,我们还使用 NVIDIA cuQuantum 和 NERSC Perlmutter HPC 克服了大量子比特(25 个量子比特或更多)和大量事件情况下的密集计算资源挑战。
SHiELD 代表了下一代定向能技术。自卫高能激光演示器 (SHiELD) 是一种先进技术演示 (ATD),它利用了空军研究实验室 (AFRL) 产品组合中的尖端研究成果。目标是提高高能激光武器系统技术的成熟度,并展示它们作为各种机载平台的作战军事能力向作战部队过渡的准备情况。
