使用高速撞击点火测试系统研究脆性铝热剂弹丸以 850 和 1200 米/秒的速度撞击惰性钢靶时的动态响应。弹丸包括固结的铝和三氧化二铋,由推进剂驱动的枪发射到配备高速成像诊断装置的捕集室中。弹丸穿过捕集室入口处的防爆屏,在穿透防爆屏时碎裂或在撞击钢靶之前保持完整。在所有情况下,弹丸在撞击时都会粉碎,反应碎片云会扩散到捕集室中。在较低的撞击速度下,碎裂弹丸和完整弹丸产生的火焰蔓延速度相似,均为 217 – 255 米/秒。在较高的撞击速度下,完整的射弹产生最慢的平均火焰蔓延速度,为 179 米/秒,因为碎片的反弹受到射弹长度的限制,并且由此产生的碎片场在径向高度集中。相比之下,破碎的射弹反弹成分散良好的碎片云,其火焰蔓延速度最高,为 353 米/秒。提出使用动能通量阈值来描述观察到的碎片分散和火焰蔓延速度的变化。使用计算流体力学代码开发了一种基于粒子燃烧时间的反应性模型,该模型结合了多相环境中的传热和粒子燃烧,以了解粒径如何影响火焰蔓延。模型结果显示,对于较小颗粒碎片,更快的反应性和增加的阻力抑制运动之间存在权衡。
为了开发高级材料解决方案并改善预测模型,必须充分了解对广泛的外部刺激的基本材料反应[1]。在极端温度,机械应力,放射线和其他恶劣条件下的系统对未来的工程应用(例如深空探索[2]和先进的核反应堆[3])引起了人们的兴趣。单独的这些条件会带来重大挑战,尽管材料很少受到单个压力源。要捕获在这种环境中可能出现的协同作用,有必要将材料暴露于相关条件的组合中,以揭示基本机制之间的复杂相互作用[4]。sub-nm解决能力和应用刺激的组合使原位传输电子显微镜(TEM)成为探索Mateiales Science基本机制的强大工具[5]。通过将电子束成像与样品持有人的变量和外部硬件耦合,直接观察材料如何响应耦合的极端条件的响应。与建立硬件,进行实验和解释结果相关的挑战使原位tem成为研究的动态和活跃领域。近几十年来,原位显微镜的能力范围已实际增长,允许化学反应期间的纳米力学测试[6,7],用于放射损伤研究的离子辐射[8,9],紫外线可见光光照明光催化的光照明用于光催化[10],超级进程[10],超级进程[10],nano-sace [10] [10] [10] [10] [10] [12–15]。近几十年来,原位显微镜的能力范围已实际增长,允许化学反应期间的纳米力学测试[6,7],用于放射损伤研究的离子辐射[8,9],紫外线可见光光照明光催化的光照明用于光催化[10],超级进程[10],超级进程[10],nano-sace [10] [10] [10] [10] [10] [12–15]。Sandia国家实验室是经过重大修改的所在地,被称为原位辐射TEM(I 3 TEM)[16]。三个离子加速器的集成,激光暴露,加热和冷却功能,机械测试平台和高速成像功能使I 3 TEM唯一
液滴撞击动力学一直是液滴研究的重点和热点,深入挖掘液滴撞击动力学机理有利于自上而下指导和优化材料设计。随着高速成像技术的发展和创新[13],液滴撞击的瞬态流动可以在微观时间尺度上被清晰地记录下来。单个液滴在不同表面的撞击得到了更广泛的研究。Richard等人认为液滴撞击光滑超疏水表面的接触时间与撞击速度无关,而与液滴半径的3/2次方成正比。[14]对于具有圆对称扩散和反冲的液滴撞击,存在一个接触时间的理论极限( / / 2.2 0 3 t R τ ρ σ = ≥ ∗,[15]其中,ρ是液体的密度,R 0是液滴半径,σ是其表面张力,t是固液接触时间)。为了突破这一极限,科学家通过设计和修改超疏水材料的表面结构,强化和精确控制单个液滴的反弹行为,如减少4倍接触时间的煎饼反弹[16]和7300 r min −1 的旋转反弹[17]。虽然这些研究已经被广泛应用于解决喷墨打印[18]、微流体[19]和喷雾[20]的问题,但较少受到关注的多液滴模型在自然界、日常生活和工程中更为常见和适用(例如,冻雨对电网的灾难性影响)。多液滴模型可分为连续液滴[21]、液滴列车[22]、同时液滴[23]和液滴喷雾[24]等。越接近真实情况,越复杂,研究难度越大。[25]作为该领域的先驱,Fujimoto等人[26]和Schwarzmann等人[27]在多液滴模型中[28]进行了系统研究。采用闪光照相法和数值模拟相结合的方法,研究了液滴直径和撞击速度对液滴撞击固体的影响。[26,27] Sanjay等人用撞击油滴从超疏水表面提起静止的油滴,观察到了随着韦伯数(ρσ=02WeDv,其中D0为液滴直径,v为撞击速度)和质心偏移而产生的六种结果,其中四种结果不是聚结而是反弹。[28] Damak等人实验研究了液滴连续撞击超疏水表面的最大膨胀直径和回缩速率,并建立了通用模型来描述它们。[29]由于多体问题的复杂性和相互作用,大多数学者主要使用数值模拟