摘要 - 次数是最敏捷的飞行机器人之一。尽管在基于学习的控制和计算机视觉方面取得了进步,但自动无人机仍然依赖于明确的状态估计。另一方面,人类飞行员仅依靠从板载摄像头的第一人称视频流将平台推向极限,并在看不见的环境中坚固地飞行。据我们所知,我们提出了第一个基于视觉的四摩托系统,该系统自动浏览高速的一系列门,而直接映射像素以控制命令。像专业的无人机赛车飞行员一样,我们的系统不使用明确的状态估计,并利用人类使用的相同控制命令(集体推力和身体速率)。我们以高达40 km/h的速度展示敏捷飞行,加速度高达2 g。这是通过强化学习(RL)的基于识别的政策来实现的。使用不对称的参与者批评,可以促进培训,并获得特权信息。为了克服基于图像的RL训练期间的计算复杂性,我们将门的内边缘用作传感器抽象。可以在训练过程中模拟这种简单但坚固的与任务相关的表示,而无需渲染图像。在部署过程中,使用基于Swin-Transformer的门检测器。我们的方法可实现具有标准,现成的硬件的自动敏捷飞行。尽管我们的演示侧重于无人机赛车,但我们认为我们的方法超出了无人机赛车的影响,可以作为对结构化环境中现实世界应用的未来研究的基础。
div> dylan Rosser www.dylanrosser.us工作经验高级模拟电路设计师NXP半导体NXP半导体•LED电力管理IP开发新产品介绍•与SOC Architect合作,与SOC Architect合作开发MCU电源架构和规格•建模,设计和模拟的电压参考,调节器和检测技能之间的交易•均衡•调查•调节•杠杆设计•均衡型号•衡量型号,并衡量型号,并在范围内进行衡量•均衡级别的行为•平衡巡回赛•专家•生产的可交付成果,例如示意图,网表,GD,LEF,模型,自由和文档•分析的老化,可靠性,SOA,SOA,DFMEA,可交付成果的质量模拟电路设计器II NXP半导体•模拟,优化和设计了各种用于数据转换器的iP和Power Machine IP的子计数,以实现多种机器学习的•用于机器学习的最佳FLED和DRC•DRC•DRC•DRC•DRC•DRC•DRC•drc•DREC•drc•drc•drc•drc•drc•drc•drc• IP•在SystemVerilog,Veriloga和Python中对SAR和管道ADC建模•脚本验证以自动化数据分析和可视化研究和助教Carnegie Mellon University•设计并布置了高速的两阶段比较器,在65nm CMOS中进行了高速两阶段的比较器•开发的Microelectronic Circen interne internect internement internect internement internect internection•构成了一项自动式的奖励•颁发的均等•验证电气工程师Cosentini Associates
等效缩放速度的减缓和经典摩尔定律的终结给硅基CMOS集成电路带来了重大挑战。这迫切需要开发用于后摩尔时代的新型材料、器件结构、集成工艺和专门的系统架构。受“更多摩尔”、“超越摩尔”和“超越 CMOS”战略 (参考文献 1:https://irds.ieee.org/) 的启发,下一代集成电路需要在各个领域提高性能,包括非硅半导体、超越 CMOS 器件、高密度集成工艺以及独特的系统架构和新兴应用。同时,卓越器件的发展推动了分层半导体、横向外延异质结、集成生物芯片方面的进步,从而实现更节能和高速的信号处理、存储、检测、通信和系统功能 (图 1)。本研究主题为研究人员提供了一个论坛,展示最新的进展,并回顾材料、结构、设备、集成和系统方面的最新发展、挑战和机遇,以照亮后摩尔时代。其中包括优化的硅基材料、新兴的层状半导体(Wang et al., 2018; Xie et al., 2018)、下一代互连材料、新型器件结构(Duan et al., 2014; Li et al., 2015)、新工作原理器件(Liu et al., 2021; Zhang et al., 2022a)、3D 集成工艺(Zhang et al., 2022b; Zhang et al., 2022c),以及生物电子学(Wang et al., 2022)和传感器技术(Abiri et al., 2022)的最新进展,强调了该领域持续研究和创新的必要性。对于优化的硅基材料,Islam 等人提出了一种简单且环保的方法,用于使用铝热还原在石英基板上低成本生产硅薄膜。这种创新方法解决了使用经济高效且可持续的方法获得高质量硅薄膜的长期挑战。研究人员利用铝热还原,将硅片表面转化为
摘要 - 对人类定居的探索和建立对火星的兴趣正在迅速增长。要实现这一目标,将需要快速运输来携带重要的物资和货物。当前的火星任务至少需要150天,在紧急情况或紧急需求的情况下,这将太长。因此,我们提出了一种尖端技术,该技术可能会使运输时间短达20天:激光驱动的光帆。这种推进方法使用地面激光阵列来推动一个小型轻巧的航天器,该航天器连接到轻帆至非常高速的速度,使任务比目前的任务快得多。通过使用MATLAB模型和激光推进计算工具,我们可以看到并确定这些任务的最佳轨迹和出发窗口。我们讨论了这些轨迹,并表明在2030 - 2032年之间的27个月内,在特定的启动窗口中可能进行了这些任务,但在此期间也面临实际挑战。在太阳连接期间,由于太阳的接近度,这种快速的运输任务受到限制,但是当过境时间要求放松时,在所有轨道相时都可以快速过境。激光阵列能够产生高达13吉瓦的激光阵列,以使20天的任务具有5 kg的航天器,能够将有价值的轻质货物携带到连接附近,但在反对周围只需要0.55 gw。所需的航天速度始终超过太阳系逃逸速度,而轨迹是双曲线。对未来工作的重要挑战涉及减速和进入,下降和着陆的机制和过程。火星上的基于地面的激光阵列可以解决这一挑战的某些方面,但是轨道几何限制了减速潜力,这意味着有效载荷需要对大型减速和影响g-负载稳健。对火星的这些20天任务可以作为更复杂,遥远任务的前身。可以提高航天器质量能力,同时还可以通过优化激光阵列和轻型帆性能来减少运输时间。也可以同时推出和增强多个航天器,以承担更多有效载荷并降低成本。这项工作旨在作为一个概念证明,即可以通过此类任务运输轻巧的有效载荷。可以在接下来的几十年中开发实现快速运输任务的技术,并将其应用于其他天体的深空任务,并将其旅行到星际空间。
用于细线/间隔电路的受控表面蚀刻工艺 Ken-ichi Shimizu、Katsuji Komatsu、Yasuo Tanaka、Morio Gaku 三菱瓦斯化学公司,日本东京 摘要 随着半导体芯片设计向越来越细的线发展,塑料封装的 PWB 和基板的设计规则正朝着更高密度发展。首先,研究了传统减成工艺可以构建多细的线,发现即使使用一些新技术,该工艺的线/间隔也限制在 40/40 左右。下一个挑战是找到一种可以构建线/间隔并摆脱加成或半加成工艺的一些问题的工艺。经证实,与 CSE(受控表面蚀刻)工艺一起使用的改进的图案电镀工艺能够制作更细的线/间隔电路,例如大约 25/25 微米。CSE 工艺的特点是使用改进的软蚀刻溶液对基铜进行均匀蚀刻。简介 半导体芯片设计正朝着越来越细的线发展,以满足更多功能和高速的需求。这一趋势对高密度 PWB 和塑料封装基板提出了越来越高的需求,需要开发许多新材料和新工艺。为了满足这些要求,基板设计规则的一些关键点是线/间距和 PTH(镀通孔)或 BVH(盲孔)的焊盘直径。关于焊盘直径,人们付出了很多努力来减小孔径,工艺已从机械钻孔转变为激光钻孔,这已成为行业中处理较小孔(例如约 80 微米)的标准。另一方面,许多研究同时进行以开发更小的线/间距。然而,对更细线/间距的需求越来越强烈,未来将更加强烈。因此,本报告的第一个目标是找出“减法”可以实现的最小线/间距,因为自 20 世纪 60 年代多层 PWB 进入市场以来,这种方法一直被用作铜线形成的主要工艺。接下来,研究了另一种方案:为了实现更精细的线/间距,人们开始研究“图案电镀工艺”。在 20 世纪 60 年代,除了“减成法”等面板电镀工艺外,还开发了“图案电镀工艺”、“加成法”和“半加成法”等多种图案电镀工艺。最近,由于能够实现更精细的线/间距和高频矩形横截面,这种图案电镀工艺比面板电镀更受业界青睐。因此,下一个挑战是找到一种能够支持 25/25 等更精细的线/间距技术的工艺。为了解决“半加成法”中的一些问题,人们研究了“图案电镀工艺”。