DC Water 的无铅 DC 计划旨在实现一项雄心勃勃的目标,即到 2030 年公平地拆除所有铅服务线。自 2019 年以来,我们更多地了解了整个特区的铅服务线位置、如何高效地完成全区范围内的铅服务线拆除,以及与客户就更换计划进行沟通的有效方式。我们利用这些经验教训修订了 2021 年铅服务线更换计划,以确保我们在 2030 年前拆除和更换特区内的每一条铅服务线。在该计划中,我们描述了最近的现场调查和更换工作的结果如何促使我们重新评估原始服务线清单的准确性。我们仔细检查了用于制定初始清单的所有数据源,并将特区内的所有服务线分类为已验证的铅服务线、疑似铅服务线、无信息(没有管道材料记录的服务线)、疑似非铅服务线和已验证的非铅服务线。此更新的库存分类系统为 DC Water 在估计特区内剩余的铅服务线时提供了更高的置信度。为了最终确定可疑的服务线是铅还是非铅,我们正在调查和验证任何被归类为可疑铅、可疑非铅或没有信息的房屋的服务线材料。在我们将要调查的房屋中,我们估计其中大约有 42,000 所房屋需要更换。随着我们在现场了解更多信息,我们将更新清单并在 Lead Free DC 网站上实时与公众分享。
FD-SOI 技术(在欧洲发明、获得完整专利和开发,非常适合加强欧洲的工业实力)得到了众多欧盟合作项目框架(ENIAC、ECSEL、KDT、CHIPS)的支持,涉及许多学术和工业合作伙伴。这些项目为创建强大而全面的生态系统做出了巨大贡献。大部分 FD-SOI 价值链(晶圆制造、建模、芯片设计和工艺等)由欧洲掌握和托管。Soitec 是 FD-SOI 衬底晶圆制造领域的全球领导者,意法半导体 (ST) 和 GlobalFoundries (GF) 使用 Soitec 的晶圆在欧洲加工 28nm 和 22nm FD-SOI 集成电路。高通、谷歌、三星、索尼、博世、Nordic、NXP 等全球领先公司和
第 1 节介绍了该项目的历史并解释了联邦参与的必要性。第 2 节描述了用于审查 Transrapid 系统的安全评估方法。第 3 节详细介绍了当前的 Transrapid 技术。第 4 节列出了迄今为止发现的潜在磁悬浮安全问题。第 5 节回顾了已发现安全问题的风险评估。第 6 节提出了已发现危险的解决方案,包括需要制定修改或新联邦法规的领域列表。第 7 节介绍了本次审查的结论并就潜在的规则制定行动提出了建议。
摘要 — 本文报告了从快速机载平台到地面站的高速率自由空间光通信下行链路的演示。所用的飞行平台是 Panavia Tornado,激光通信终端安装在附加的航空电子演示吊舱中。配备自由空间接收器前端的可移动光学地面站用作接收站。选择的通信下行链路波长和信标激光的上行链路波长与 C 波段 DWDM 网格兼容。开发了新的光机跟踪系统,并将其应用于两侧,以实现链路捕获和稳定。飞行测试于 2013 年 11 月底在德国曼奇的空中客车防务与航天公司附近进行。该活动成功展示了数据速率为 1.25 Gbit/s 的飞机下行链路激光通信的成熟度和准备就绪性。我们根据链路预算评估、开发的光机终端技术和飞行活动的结果概述了实验设计。试验本身侧重于机载终端和地面站的跟踪性能。可在飞机速度高达 0.7 马赫时测量性能,并传输来自机载摄像机的视频数据。在瞬时跟踪误差分别低于 60 μ rad 和 40 μ rad 时,机载终端和地面站的跟踪精度高达 20 μ rad rms。
Matthew R. Fulghum 的论文经过以下人员的审阅和批准*:机械工程学教授 Gary S. Settles 论文顾问 委员会主席机械工程与数学杰出教授 Asok Ray 机械工程学教授 John M. Cimbala 机械工程学教授 Philip J. Morris Boeing/A. D. Welliver 航空航天工程学教授 Daniel C. Haworth 机械工程学教授 MNE 研究生项目主管教授 * 签名已存档于研究生院。
根据其章程,AGARD 的使命是将北约国家在航空航天科学技术领域的领军人物聚集在一起,以实现以下目的: - 为成员国推荐有效的方式,以便利用其研究和开发能力造福北约社区; - 向军事委员会提供航空航天研究和开发领域的科学和技术建议和援助(特别是在军事应用方面); - 不断促进与加强共同防御态势相关的航空航天科学进步; - 改善成员国在航空航天研究和开发方面的合作; - 交流科学和技术信息; - 向成员国提供援助,以提高其科学和技术潜力; - 根据要求,向其他北约机构和成员国提供与航空航天领域研究和开发问题有关的科学和技术援助。
对现有旋转编织机的评估得出结论,所有旋转编织机的性能都受到其所采用的一个或多个概念的限制。没有一种设计能够优化旋转编织概念的一个或两个以上的方面。通过确保旋转编织概念的所有主要领域都得到一致优化,可以提高整体机器性能。设计优化分为两个部分。——第一部分是线材(产品)行为的理论和实验研究。这允许设计一种引导线材的“棒”机制,以补充线材控制标准。外部线材的控制是旋转编织机性能的基础。