摘要 - 本文介绍了旨在控制用于自主赛车竞赛的小型汽车模型的非线性模型预测控制(NMPC)策略。拟议的控制策略涉及将车辆时间最小化,同时将车辆保持在轨道边界范围内。优化问题考虑了车辆的致动极限以及作用于Pacejka魔法公式和简单传动系统模型的汽车上的侧面和纵向力。此外,该方法允许在静态障碍物填充的轨道上安全地竞争,从而产生无冲突的轨迹并跟踪它们,同时增强膝盖正时性能。使用F1/10模拟器的凉亭模拟展示了拟议的控制策略的可行性和有效性。该代码作为开源释放,使得可以复制获得的结果。索引术语 - 非线性模型预测性控制,Au au sopos Racing,F1/10模拟器,自动驾驶汽车导航。
随着量子技术的出现,信息技术的发展已到达一个关键点,有望实现无与伦比的计算能力和解决问题的能力。基于离散变量和连续变量的量子计算有望有效解决计算上难以解决的问题。离散变量量子计算依赖于有限维希尔伯特空间中编码的量子,而连续变量量子计算则利用谐振子的无限维希尔伯特空间。这两种范式在实现通用性和容错性方面都面临挑战,因此需要探索非高斯性和魔法等资源理论。本论文研究了离散和连续变量系统的量子计算资源,并有助于加深我们对实现不同架构中量子计算潜力所必需的资源的理解。我们研究这些资源理论之间的相互作用,提出新的量词并建立离散和连续变量量子计算之间的联系。
很久以前,在人类历史的黑暗未书写的篇章中,强大的国王发现了如何通过酷刑、魔法、战争、政治、宗教和利益来控制他人。这些精英家族设计了战略和战术来延续他们的神秘实践。层层秘密将这些家族隐藏在世俗大众之外,但许多作者都提到了他们的存在。当我开始从消息灵通的人那里获得第一手报告,说一个精英集团确实统治着世界时,我开始了我的研究。我对撒旦等级制度的研究进展很快,因为我作为一名研究人员的技能,因为我从一开始就从我的线人那里知道了我正在调查的现实。我对光明会的调查,让我阅读和祈祷了数千本书。我读过的书籍、报纸、杂志、手稿和论文的数量数以千计,让我走到了今天的位置。我不知道我熬夜学习了多少个夜晚,最后在模糊的红眼中倒下睡觉。
简介 公司在选择性激光熔化 (SLM) 方面的历史可以追溯到大约十年前。多年来,研究涉及多个主题,以评估这种最新珠宝制造工艺的总体性能,从参数选择到粒度分布和流动性,以获得更致密的物品和均匀的粉末层。1,2,3 随后添加微量半导体元素 (Ge、Si) 以增加激光吸收率,并改变支撑系统的结构,从而显着降低粗糙度和残余孔隙率。3,4 其他研究将传统的失蜡投资工艺与选择性激光熔化在生产典型的装饰细节或非常漂亮的铂金首饰方面进行了比较 5,6 并展示了打印过程作为魔法锅的机会,可以生产出具有非常不寻常元素 (Nb、Ti) 的出色硬质白金合金 7 并且对环境的影响较小。8
在理论机器学习中,统计复杂性是衡量假设空间丰富性的概念。在这项工作中,我们将特定的统计复杂性量度(即Rademacher复杂性)应用于量子计算中的量子电路模型,并研究统计复杂性如何取决于各种量子电路参数。,我们研究了统计复杂性对量子电路的资源,深度,宽度以及输入和输出寄存器的数量的依赖性。为了研究统计复杂性如何通过电路中的资源扩展,我们基于(p,q)组规范引入了魔术的资源度量,该魔法量化了与电路相关的量子通道中的魔术量。这些依赖性在以下两个设置中进行了研究:(i)整个量子电路被视为单个量子通道,以及(ii)量子电路的每一层被视为单独的量子通道。我们获得的界限可用于根据其深度和宽度以及网络中的资源来限制量子神经网络的能力。
熟悉 Steane 代码的读者知道,应用于每个物理量子位的按位 K 门可在逻辑数据上实现 K ∗ 。因此,乍一看,人们可能希望 K 门像 CNOT 一样,在陷阱方案下允许简单的按位小工具。不幸的是,即使底层代码允许按位实现 K 门,陷阱代码也不允许按位实现。陷阱代码的按位实现失败,因为在状态 | + ⟩ 下准备的陷阱量子位被 K 映射到 K | + ⟩ = | 0 ⟩ + i | 1 ⟩ 。处于此状态的陷阱量子位被检测为 Z 误差的概率为 1 / 2 。相反,我们需要一个更复杂的 K 魔法状态小工具,它只使用 Pauli 和 CNOT 门以及计算基础中的测量。我们的小工具是对众所周知的 π/ 8 门容错构造的简单修改。K 门的逻辑小工具如下所示。
最近,交替的Twist多层石墨烯(ATMG)已成为Moiré系统家族,它们与扭曲的双层石墨烯共享几种基本特性,并有望在魔术角附近托管类似强的Electron-Electron相互作用。在这里,我们研究了交替的扭曲Quadrilayer石墨烯(ATQG)样品,扭曲角为1.96°和1.52°,它们从1.68°的魔法角度略微去除。在较大的角度,我们才发现仅当ATQG被掺杂而没有超导性的签名时,我们才能发现相关绝缘子的特征,而对于较小的角度,我们找到了超导性的证据,而相关绝缘体的符号则弱化。我们的结果提供了对ATMG相关相的扭曲角依赖性的见解,并阐明了魔术角范围边缘的中间耦合方案中相关性的性质,在魔术角范围的边缘范围内,分散和相互作用的相同顺序相同。
TDDS 是一种独立的、离散的药物输送系统,用于延长、定位和定位受损部位,也被称为智能药物输送系统。药物靶向的概念是基于一些基于载体的输送到特定作用位点,称为“魔法子弹” (Muller RH. 和 Keck CM.,2004)。这些药物可生物降解且无毒。例如脂质体(Navneet Kumar Verma 和 Asha Roshan,2015 年)、磁微球(Amit Chandna 等人,2013 年)、聚合物胶束(M. Nakayama 和 T. Okano,2006 年)、树枝状聚合物(Madaan K 等人,2014 年)、脂蛋白(Mina Nikanjam 等人,2007 年)、纳米粒子(Rajesh Singh 和 James W. Lillard Jr.,2009 年)等。这种科学相关性表明 TDDS 领域有更广泛的应用。该系统的目标是管理药代动力学、药效学、免疫原性、
量子计算机有望比传统计算机具有显著的优势,但量子计算的强大力量来源仍未可知。在这里,我们证明了语境性的出现与通过“魔法状态”蒸馏实现通用量子计算的可能性之间存在显著的等价性,这是实验实现容错量子计算机的主要模型。这是一个概念上令人满意的联系,因为语境性排除了简单的量子力学“隐藏变量”模型,提供了独特量子现象的基本特征之一。此外,这种联系为量子信息资源提供了一个统一的范式:量子理论的非局域性是一种特殊的语境性,而非局域性已经被认为是实现量子通信优势的关键资源。除了澄清这些基本概念之外,我们还将讨论如何将量子计算与语境性联系起来。