•首先,可能会刺激现有肌纤维中的差异化CMS,以进入细胞周期,分裂和改革顶点。•第二,可以通过募集形成新的增生性CM的未分化的祖细胞来进行再生。•关于再生肌肉起源的第三个可能的机制是这两种称为“去分化”的机制的嵌合体,其中现有肌肉将下调收缩基因以创建未分化或不良分化的细胞。
描述:成人斑马鱼模型的神经行为和生理数据的数据库,通过为斑马鱼遗传信息提供了可用的存储库,通过提供动态的,开放的访问数据存储库,这些数据库是全面的,经过精心策划的Zebrafish Neurobafish Neurobobehavioral实验的结果收集的。截至2012年5月,它包含超过4500多个实验结果,来自75多种独特的生理和行为测试以及330种不同的药物治疗。ZNP结合了该领域发表的工作的经过验证和策划的数据,以提高对使用成人斑马鱼模型有兴趣的研究人员的当前知识的可访问性。总体而言,该计划将允许研究人员快速审查数据,并使用这些模型指导他们的研究。数据和协议提交现在正在接受。
Keap1 – Nrf2 通路是一种进化保守的机制,可保护细胞免受氧化应激和亲电试剂的侵害。在稳态条件下,Keap1 与 Nrf2 相互作用并导致其快速蛋白酶体降解,但当细胞暴露于氧化应激/亲电试剂时,Keap1 会感知它们,导致 Keap1 – Nrf2 相互作用不当和 Nrf2 稳定。因此,Keap1 被认为是 Nrf2 激活的“抑制剂”和“应激传感器”。有趣的是,鱼类和两栖动物有两种 Keap1(Keap1a 和 Keap1b),而哺乳动物、鸟类和爬行动物只有一种。系统发育分析表明,哺乳动物 Keap1 是鱼类 Keap1b 的直系同源物,而不是 Keap1a。在本研究中,我们使用斑马鱼遗传学研究了 Keap1a 和 Keap1b 之间的差异和相似之处。我们构建了 keap1a 和 keap1b 的斑马鱼基因敲除系。两种基因敲除系的纯合突变体均可存活且可育。在两种突变幼虫中,Nrf2 靶基因的基础表达和抗氧化活性均以 Nrf2 依赖的方式上调,表明 Keap1a 和 Keap1b 均可作为 Nrf2 抑制剂发挥作用。我们还分析了 Nrf2 激活剂萝卜硫素对这些突变体的影响,发现 keap1a- ,而非 keap1b- ,基因敲除幼虫对萝卜硫素有反应,表明两种 Keap1 的压力/化学感应能力不同。
现代计算增强了我们对社会相互作用如何塑造动物社会中集体行为的理解。尽管分析模型在研究集体行为方面占主导地位,但本研究介绍了一个深度学习模型,以评估鱼类杜鹃花的社交相互作用。我们将深度学习方法的结果与实验以及最先进的分析模型的结果进行了比较。为此,我们提出了一种系统的方法来评估集体运动模型的信仰,利用了一组严格的个人和集体时空可观察物。我们证明,社交互动的机器学习模型可以直接与他们的分析同行竞争,以复制微妙的实验可观察物。更重要的是,这项工作强调了在不同时间尺度上进行一致验证的必要性,并确定了关键的设计方面,使我们能够捕捉短期和长期动态的深度学习方法。我们还表明,我们的方法可以扩展到没有任何培训的情况下以及其他鱼类,同时保留了深度学习网络的相同结构。最后,我们讨论了在动物群体中集体运动研究的背景下,ML的附加值及其作为分析模型的补充方法的潜力。
在大约100个硬骨鱼珊瑚礁鱼家族中,有36个是众所周知,它们的鸡蛋在礁石上的矿物巢中产生,在那里它们被成年人育成(Shulman&Bermingham,1995年)。虽然在物种之间的孵化和幼虫的孵化能力差异很大,但在所有礁鱼中,嗅觉,听力和视力的感觉系统是最早在受肥后开始在胚胎中发育的器官之一(请参阅Myrberg&Fuiman 2002中的评论)。这可能是因为这些感觉必须在孵化时避开捕食者和饥饿的机会,必须达到一定程度的功能。但是,这些系统的早期开发也可能服务于其他功能。在某些动物中,在孵化过程中感觉到环境刺激的能力可能会构成在较旧的生活历史阶段有用的重要行为线索。例如,化学物质的印记
持续的气候变化已经与野生鱼类和养殖鱼类的疾病爆发增加有关。在这里,我们评估了当前关于气候变化相关的生态免疫学的知识,重点是探索多种压力源的交互作用,重点是临时,缺氧,盐度和酸化。我们的文献综述表明,温度和溶解氧的急性和慢性变化会损害鱼类免疫力,从而导致疾病易感性增加。此外,已经证明温度和缺氧可以增强某些病原体/寄生虫的感染并加速疾病进展。也很少有针对酸化的研究,但是直接的免疫作用似乎受到限制,而盐度研究导致了对比结果。同样,对于揭示同时改变环境因素的相互作用所必需的多压力实验仍然很少。这最终阻碍了我们估计气候变化在多大程度上会妨碍鱼类免疫力的能力。我们对表观遗传调节机制的评论突出了鱼类免疫反应对不断变化的环境的适应潜力。但是,由于表观遗传学研究数量有限,因此无法得出总体结论。最后,我们提供了如何更好地估计鱼类未来免疫研究的现实气候变化情景影响的前景。
摘要:神经保护性药物向眼后部分递送是抵消视力丧失的主要挑战。这项工作着重于基于聚合物的纳米载体的开发,该纳米载体专门设计用于靶向后眼。聚丙烯酰胺纳米颗粒(ANP)合成和表征,并且通过与花生凝集素(ANP:PNA)和Neurotrophinnerve nerve nerve nerve nerve生长因子(ANP:pna:pna:pna:pna:ngf)结合,利用了高结合效率来获得眼部靶向和神经保护能力。使用氧化应激诱导的视网膜变性模型评估了ANP:PNA:NGF的神经保护活性。纳米成型后,NGF改善了玻璃体内注射过氧化氢后斑马鱼幼虫的视觉功能,并伴随着视网膜中凋亡细胞的数量减少。此外,ANP:PNA:NGF抵消了暴露于香烟烟雾提取物(CSE)的斑马鱼幼虫中的视觉行为受损。总的来说,这些数据表明我们的聚合物药物输送系统代表了针对视网膜变性实施目标治疗的有前途的策略。
摘要 — 自动眼动追踪对于与患有肌萎缩侧索硬化症的人互动、用眼睛控制电脑鼠标以及对葡萄膜黑色素瘤进行控制性放射治疗都具有重要意义。据推测,凝视估计的准确性可能通过使用前庭眼动反射来提高。这种不自主的反射会导致缓慢的补偿性眼动,与头部运动的方向相反。因此,我们假设在眼动追踪过程中让头部自由移动一定比保持头部固定、只让眼睛移动产生更准确的结果。本研究的目的是创建一个低成本的眼动追踪系统,通过保持头部自由移动,将前庭眼动反射纳入凝视估计中。所用的仪器包括一个低成本的头戴式网络摄像头,可记录一只眼睛。尽管用于记录的网络摄像头是低端的,并且没有直接照明,但瞳孔检测是完全自动和实时的,采用了简单的基于颜色和基于模型的混合算法。本研究测试了基于模型的算法和基于插值的算法。根据凝视估计结果中的平均绝对角度差,我们得出结论,基于模型的算法在头部不动时表现更好,而在头部移动时同样表现良好。当头部自由移动时,使用任一算法,凝视点与目标点的大多数偏差小于 1 ◦,可以得出结论,我们的设置完全符合文献中的 2 ◦ 基准,而头部不动时的偏差超过 2 ◦。所使用的算法之前未在被动照明下进行测试。这是首次研究考虑到前庭眼反射的低成本眼动追踪装置。