通过将自然语言纳入附加指导来实现单眼深度估计的最新进展。尽管产生了令人印象深刻的结果,但语言先验的影响,尤其是在发生和鲁棒性方面,仍未得到探索。在此过程中,我们通过量化此之前的影响来解决这一差距,并引入方法以在各种环境中基准其有效性。我们生成“低级”句子,传达以对象为中心的三维空间关系,将它们纳入其他语言先验,并评估其对深度估计的下游影响。我们的关键发现是,当前语言引导的深度估计仅通过场景级别的描述和违反直觉的效果最佳地发挥作用。尽管利用了其他数据,但这些方法对于对抗性攻击并随着分配变化的增加而对性攻击和绩效下降并不强大。fi-nally,为了为未来的研究提供基础,我们识别出失败点,并提供见解以更好地理解这些缺点。使用语言进行深度估算的越来越多的方法,我们的发现突出了需要仔细考虑在现实世界中有效部署的机会和陷阱。1
1。上下文SIC MOSFET由于其强劲的损失而广泛用于新应用设计,并且具有高开关频率和高工作温度的功能。与氧化门相关的可靠性问题已经很好地解决,并且已经发表了许多有关阈值电压不稳定性的研究[1; 2]。使用车身二极管避免外部Schottky二极管[3; 4]。在本研究中,对1.2 kV的SIC MOSFET体二极管进行了压力并进行了研究,以确定使用时任何衰老或降解问题。
摘要。任何组织的主要活动都依赖于最短的时间和最高质量的所需商品和服务的采购。在此基础上,供应商评估,排名和选择的问题被认为至关重要。数据包络分析是该领域众所周知且成功的方法。在这项研究中,我们提出了一个健壮的数据包络分析模型,以衡量不确定性下决策单位的效率。我们通过标准和倒置模型在弹性和敏捷性方面衡量效率。为了证明所提出的模型的实际潜力,我们将模型应用于具有90个决策单位的伊朗电信行业的案例研究。数值结果表明,人力资源和现金资产是最重要的输入标准。此外,输出指标(包括适应性,可靠性,可见性和协调)在衡量决策单位的效率方面具有很高的重视。应注意的是,采用健壮的优化方法会导致控制不确定参数的波动,并在不同情况下保持理想的最佳效率效率水平。结果表明,该模型足以评估电信行业的供应商的性能,可以在不确定的条件下使用,并且可以纳入决策者的不同偏好。从这项研究中得出的管理见解表明,在短期内,供应商的整个评估过程中的不确定性通常会导致决策单位的效率降低。但是,在不确定性下运行与长期相关的几个优势,例如提高决策一致性和提高了应对不确定性的重要能力。
摘要 - 在本文中,我们解决了在存在实用车辆建模错误(通常称为模型不匹配)的条件下导航时自动赛车的强化学习(RL)解决方案的性能(RL)解决方案的问题。为了应对这一挑战,我们提出了一种部分端到端算法,该算法可以解除计划和控制任务。在此框架内,RL代理会生成一个轨迹,该轨迹包括路径和速度,随后使用纯粹的追击转向控制器和优势速度控制器对其进行跟踪。相比之下,许多当前基于学习的基于学习的(即增强和模仿学习)算法使用了一种端到端方法,从而深层神经网络将传感器数据直接映射到控制命令。通过利用经典控制器的鲁棒性,我们的部分端到端驾驶算法比标准的端到端算法表现出更好的模型不匹配的鲁棒性。
摘要:本文旨在为对抗性的防御研究差距做出贡献,这是广告讽刺机器学习(ML)攻击和防御的最新技术。更具体地,它有助于对对抗性示例攻击的人工智能(AI) / ML模型的鲁棒性进行度量测量,目前,这仍然是网络安全域中的一个空旷问题,并且在更大程度上是基于量子计算的AI / ML应用程序的更大程度的问题。我们提出了一种新的对抗性鲁棒性测量方法,该方法从量子ML ML模型实验的性能结果中测量统计特性(例如精度和t检验结果的平均值)。我们认为,我们提出的方法适合实现量子安全世界的实际使用,因为在当前嘈杂的中间尺度量子设备(NISQ)时代,量子噪声对于建模是复杂且具有挑战性的,因此使测量任务或基准测试变得复杂。我们的研究的第二个贡献是用于僵尸网络域生成算法(DGA)检测的新型硬化杂交量子量化深度学习(DL)模型,它采用了一种模型硬化的广告范围训练技术来减轻新型未知DGA对手,因为新的CyberAttarake从网络攻击中进行了新的CyberAttack,因此可以预期的是遇到网络武器竞赛。我们的分析表明,混合量子DL模型对对抗性示例攻击的脆弱性高达19%的平均准确性下降。我们还发现,硬化模型的优越性获得的平均准确性高达5.9%。此外,我们发现杂交量子型DL方法使抑制量子噪声对分类器性能的负面影响的好处。我们演示了如何应用我们提出的测量方法评估我们的新型混合量子DL模型,并强调了我们的模型与对抗性示例攻击的对抗性鲁棒性,这是我们研究对跨量子对抗机器学习的实际意义的证据。
当前的最新对象识别模型主要基于会议神经网络(CNN)架构,这些架构是受灵长类动物视觉系统的启发。然而,这些CNN可以被严重的小型,明确的精心制作的扰动而愚弄,并难以识别被人类易于认可的损坏的图像中的物体。在这里,通过与灵长类神经数据进行比较,我们首先观察到具有神经隐藏层的CNN模型更好地匹配灵长类动物的一级视觉皮层(V1),也对广告症的攻击也更为强大。受到这一观察的启发,我们开发了Vonenets,这是一种新的混合CNN视觉模型。每个vonenet都包含一个固定的权重神经网络前端,该vonnet模拟灵长类动物V1,称为VoneBlock,然后是由当前CNN视觉模型改编的神经网络后端。voneBlock基于V1的经典神经科学模型:线性 - 非线性 - 偏见模型,由生物学上约束的Gabor滤波器库组成,简单且可构成细胞的非线性和V1 Neuronal neuronal neuronal stochasticity生成器。训练后,Vonenets保留了较高的ImageNet性能,但每种表现都更高,在由白色盒子对抗性攻击和常见的图像腐败组成的扰动的基准上,分别超过了CNN和最先进的方法,分别超过了18%和3%的基本方法。最后,我们证明了VoneBlock在协同作用中的所有组成部分都可以提高鲁棒性。虽然当前的CNN体系结构可以说是受到脑部启发的,但此处介绍的结果表明,更精确地模仿灵长类动物视觉系统的一个阶段会导致Imagenet级计算机视觉应用中的新增长。
我们进入了一个快速发展的人工智能和机器学习时代,大型语言模型(LLM),视觉语言模型(VLM)和生成性AI越来越多地与我们的生活交织在一起。这些强大的工具具有彻底改变无数领域的潜力 - 从医疗保健到交通,教育到娱乐,我们的工作空间再到房屋。,但没有它的危险就不会产生这种巨大的潜力。我们目睹了由于缺乏鲁棒性,效率和公平性,AI/ML模型未达到我们的期望。例如,微软的AI聊天机器人的“ tay”开始掠夺攻势和不适当的内容,成为AI对虚假功能的敏感性的惊人例子。同样,自动驾驶汽车已经显示出对对抗扰动的脆弱性 - 从战略上放置在停车标志上的简单贴纸欺骗了这些AI模型,以将其错误分类。此外,当面对分配变化时,许多AI模型都步履蹒跚,无法将其从训练到现实世界的条件推广到现实状况,这证明了AI经常记录的斗争,从而识别出代表性不足的群体的面孔。这些模型的效率是增殖AI应用时代的另一个关键问题。由于计算资源和数据隐私是重大限制,我们需要精益且具有数据效率的模型。此外,随着AI模型继续影响医疗保健,招聘和执法等关键领域的决策,公平已成为不可谈判的要求。最近的变压器模型尽管具有令人印象深刻的功能,但由于其对计算资源的需求和广泛的培训数据而臭名昭著,这使我们迫切需要有效的模型设计,数据利用和学习过程。长期公平性尤其具有挑战性,因为这些AI系统经常会遇到随着时间的流逝而不断发展的数据分布,这可能会导致其公平标准偏离。
摘要:神经网络在关键任务中起着至关重要的作用,其中错误的产出可能会带来严重的后果。传统上,神经网络的验证重点是评估其在大量输入点上的性能,以确保所需的输出。但是,由于输入空间的几乎无限基数,详尽检查所有可能的输入变得不切实际。在广泛的输入样本上表现出强大性能的网络可能无法在新颖的情况下正确概括,并且仍然容易受到对抗性攻击的影响。本文介绍了神经网络鲁棒性的一般管道,并概述了不同的领域,这些领域共同努力,以实现鲁棒性保证。这些领域包括评估针对对抗性攻击的鲁棒性,正式评估鲁棒性并应用防御技术以增强模型时的鲁棒性。
在这项研究中,我们评估了自主驾驶(AD)系统中增强学习的鲁棒性(RL),特别是反对对抗攻击的稳健性。我们采用了Karavolos等人提出的基于Q学习的AD模型。[1]的简单性,是我们分析的基础。此选择使我们能够在简单的Q学习方法和更复杂的RL系统之间进行明显的比较。我们设计了两个威胁模型,以模拟对基于RL的广告系统的对抗性攻击。第一个模型涉及在RL模型的细调中注入未发现的恶意代码,使其容易受到对抗性扰动的影响,这可能会导致在特定的触发条件下碰撞。第二个威胁模型旨在通过直接改变RL模型在特定触发条件下的行动决策来引起碰撞,这代表了一种更隐秘的方法。基于这些威胁模型,我们对两种主要情况的实证研究提出:操纵传感器输入和直接对动作的扰动。研究结果表明,尽管基于RL的AD系统表现出针对传感器输入操纵的弹性,但在受到直接动作扰动时它们会表现出脆弱性。主要的和宽容的场景涉及更改传感器读数,例如在偏心转弯期间,这可能会误导系统并可能导致事故。这对于小误差很大的操作至关重要。第二种情况直接扰动动作,更多地是对基于RL的AD系统脆弱性的理论研究,而不是实用的现实世界威胁。
摘要:蛋白质,原代代谢产物和化学物质的微生物生物合成正在增强势头,目前被视为工业研究部门的一种前进方法。对环境的威胁增加了,石油资产下降的可能性已将聚光灯转变为微生物细胞工厂(MCFS)。除了具有与化学合成相比的各种优势(例如毒性,更便宜的方法论和环境良性的性质)外,发酵罐还可以种植微生物,从而在工业相关性方面采用有效的生物处理方法。由于绝大多数生物多样性都是微生物,因此该评论首先凸显了工业上重要的微生物的微生物生物多样性。然后,纸张描绘了通过微生物求职者生成有价值的生物产品的生产途径。许多宿主细胞合成生物化合物作为其自然机制的一部分;但是,还开发了几种技术来从具有选定特性的非本地微生物中获得所需的最终产物。微生物生物合成途径可以归类为天然 - 现有途径,异源途径和人工途径。系统的代谢工程将代谢工程与进化工程,合成双学科和系统生物学整合在一起,进一步彻底改变了工程强大表型领域。这些策略的使用可改善菌株的性能,最终达到生物化学物质的高滴度和生产率。在本文中还简要讨论了用于利用本地途径和设计非本地创建途径的现代趋势和工具。fi-nce,综述讨论了使用微生物工作试力品来生产无数材料和化学物质,包括羧酸,氨基酸,植物天然产物(PNP),类胡萝卜素,口味和香料,揭示使用微生物物种生成可持续性生物生物生物生物生物生物的功效。