新德里,印度摘要 - 量子误差校正(QEC)是保护量子信息免受反矫正和错误的重要技术。这涉及算法和技术的设计和实施,以最大程度地降低错误率并提高量子电路的稳定性。QEC中的关键参数之一是错误纠正代码的距离,该代码确定了可以纠正的错误数量。另一个重要参数是误差概率,它量化了量子系统中发生错误的可能性。在这种情况下,仿真扫描的目标像代码中执行的模拟是为了研究QEC代码的性能,以确定距离和错误概率的不同值,并优化代码以最大程度的准确性。通过改变这些参数并观察代码的性能,研究人员可以深入了解如何设计更好的代码并提高量子计算系统的可靠性。我们还讨论了量子计算需要解决的挑战,以实现其在解决实际错误纠正问题方面的潜力。
在原核生物中发现的多种抗病毒防御机制中,CRISPR-Cas 系统是已知的唯一一种用于检测和破坏噬菌体和质粒的 RNA 编程途径。第 1 类 CRISPR-Cas 系统是这些适应性免疫系统中分布最广泛、种类最多的系统,它使用 RNA 引导的多蛋白复合物来寻找外来核酸并触发其破坏。在这篇综述中,我们描述了这些多亚基复合物如何靶向和切割 DNA 和 RNA,以及调节分子如何控制它们的活性。我们还重点介绍了它与使用单蛋白效应子的第 2 类 CRISPR-Cas 系统以及其他类型的细菌和真核免疫系统的异同。我们总结了第 1 类 CRISPR-Cas 系统在 DNA/RNA 修饰、基因表达控制和核酸检测方面的当前应用。
如果初次阅读时觉得本文的结构有些混乱,那是因为有些考虑被故意拖延了。我们希望在后续阅读中,原因会变得清晰。在第 2 节中,我们定义了符号,介绍了散射问题的离散化,将 FMM 与更熟悉的快速算法联系起来,并介绍了 FMM 的基本分析工具。第 3 节给出了 FMM 实现的详细说明(除了算法的一些重要参数的选择)。在展示该方法的结构之后,第 4 节将分析这些参数(多极展开中使用的项数以及远场量制表的方向)。标量问题的算法已经完全定义,我们在第 5 节中展示了应用于矢量(电磁)散射所需的微小修改。在结束之前,第 6 节给出了 FMM 背后分析的物理解释。
边界算子是一个线性算子,它作用于一组高维二元点(单纯形),并将它们映射到它们的边界上。这种边界图是许多应用中的关键组件之一,包括微分方程、机器学习、计算几何、机器视觉和控制系统。我们考虑在量子计算机上表示完整边界算子的问题。我们首先证明边界算子具有特殊结构,形式为费米子产生和湮灭算子的完全和。然后,我们利用这些算子成对反对换的事实来生成一个 O(n) 深度电路,该电路精确实现边界算子,而没有任何 Trotterization 或泰勒级数近似误差。错误越少,获得所需精度所需的拍摄次数就越多。
摘要。较小的尺寸,降低的成本和快速的产量,每天都在变得重要。如今,几个立方体正在低地轨道(LEO)进行电信,地球观察,示威者,但对使用Cubesats进行太空探索和狮子座以外的运行的兴趣正在增长。已经启动了一些任务,目的是证明Cubesat在深空(例如Lici-Acube,Marco)等的可行性将在未来几年(例如Apex)启动。然而,必须解决一些挑战,以使方形群体大量允许外太空,而且除其他外,推进子系统是最精致的系统之一。实际上,由于数量和质量的局限性,推进子系统在特定的效果,推力和可靠性方面受到严格要求。在本演讲中,将提出对Cubesats的推进子系统的可能解决方案的分析,并特别注意电推进和冷气。将讨论预设子系统的最新进步及其在深空操作中的适用性。最后,将评估公开挑战和未来的工作。
我们知道这是一个雄心勃勃的议程,但如果信托基金要实现其三年战略,我们就必须取得成功。作为一个组织,实现这一目标需要投入资金和时间,但在该组织的支持下,我们期望看到员工团体对我们的数字化抱负更加热情和投入,并继续采用和利用我们先进的数字基础设施和系统,造福我们的患者和当地居民。
1 加拿大国家研究委员会,加拿大安大略省渥太华 K1A 0R6 2 多伦多大学物理系,加拿大安大略省多伦多 M5S 1A7 3 瓜达拉哈拉大学物理系,墨西哥哈利斯科州瓜达拉哈拉 44420 4 湖首大学物理系,加拿大安大略省桑德贝 P7B 5E1 5 马克斯普朗克光物理研究所,德国埃尔朗根 91058 6 俄罗斯科学院应用物理研究所,俄罗斯下诺夫哥罗德 603950 7 德克萨斯 A&M 大学量子科学与工程研究所,美国德克萨斯州学院城 77843 8 德克萨斯 A&M 大学物理与天文系,美国德克萨斯州学院城 77843 9 德克萨斯 A&M 大学生物与农业工程系, Texas 77843, USA 10 Departamento de Óptica, Facultad de Física, Universidad Complutense, 28040 马德里, 西班牙 * 通讯作者: lsanchez@fis.ucm.es
2技术概述5 2.1量子背景。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.2为什么恶意安全难以实现?。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 2.3 C + M电路的插入方案。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 2.4具有恶意安全性的三岁协议。。。。。。。。。。。。。。。。。。。。。。。。8 2.5应用:QMA可重复使用的MDV-NIZK。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.6在量子设置中实现两轮协议时面临的挑战。。。。。。。。。。。。10 2.7带有预处理的两轮协议。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 2.8多方设置。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 2.9两轮2PQC没有预处理:挑战和可能性。。。。。。。。。。。。16